
AIPA’s International Journalon Artificial Intelligence:Bridging Technology, Societyand Policy
ISSN: 3062-097X

Published: 2025

OPEN ACCESS
AIPAJ Vol:1, Issue:2

*Corresponding author
nebrahimpour@ktu.edu.tr

Submitted 10 June 2025

Accepted 28 August 2025

Citation
İBRAHİMOĞU, N., Furkan, Y.,
Mustafa, K. (2025). Through

the Eyes: A Survey on
Gaze-Based Biometric

Authentication Systems.
AIPA’s International Journal on
Artificial Intelligence: Bridging
Technology, Society and Policy,

1(2).
DOI:

10.5281/zenodo.17191813

Through the Eyes: A Survey on Gaze-Based
Biometric Authentication Systems
Nadir İbrahimoğlu1*, Furkan Yıldız2, and Mustafa Kahraman3

1MSDC Department, Huawei R&D Center, Ankara, Türkiye, ORCID:0000-0003-1189-3054
2Papilon Savunma, Ankara, Türkiye, ORCID:0009-0003-1334-1613
3MSDC Department, Huawei R&D Center, Ankara, Türkiye, ORCID:0000-0002-7218-9311

ORIGINAL RESEARCH PAPER

Abstract
Eye-based biometric authentication leverages distinctive patterns in users’ gaze movements to providesecure, continuous verification and addresses escalating challenges in cybersecurity. This comprehensivereview surveys 222 peer-reviewed publications and introduces the first three-dimensional taxonomy of thefield spanning: (i) authentication approaches (physiological, behavioral, hybrid), (ii) system platforms (hard-ware/software/cloud/edge/embedded), and (iii) evaluation aspects (accuracy measures, spoofing resistance,usability). Departing from conventional Human-Computer Interaction (HCI) surveys, our study employs asecurity-oriented framework informed by adversarial insight alongside a systematic comparative analysis.We evaluate methodologies across deployment platforms ranging from desktop infrared (IR) tracking toExtended Reality (XR) head-mounted displays, using well-crafted datasets (GazeBase, GazeBaseVR, Gaze360,LPW). The analysis yields three central insights. First, physiological cues exhibit temporal stability andstrong spoofing resistance; behavioral cues offer adaptive performance that remains robust to calibrationon ordinary commodity sensors; and hybrid approaches attain superior performance at the cost of highercomplexity. Second, system robustness requires robust liveness and Presentation Attack Detection (PAD)solutions, with multi-modal fusion and template protection essential against presentation, synthetic, andadversarial attacks. Third, cloud and edge architecture can effectively mitigate latency and privacy con-straints via on-device inference and privacy-preserving learning methods. These results indicate substantialopportunities in enterprise, XR, automobile, mobile/IoT, and smart-environment applications. We concludeby outlining priority research directions: standardization protocols, privacy-preserving methods, optimizationof multi-modal fusion, and longitudinal cross-cultural validation to ensure fairness and robustness in realdeployments.
Keywords: gaze-based biometrics, eye movement authentication, behavioral gaze dynamics, hybrid fusion,security evaluation.

1 Introduction
Ongoing digital transformation and increasingly sophisticated cyber threats underscore the need for authen-tication systems that are both secure and usable. Conventional approaches face challenges: passwords sufferfrom poor practices and scalable attacks, while token-based systems create single points of failure [1, 2].Biometric authentication directly associates credentials with individuals, reducing knowledge and possessionrisks [3]. Gaze-based methods leverage physiological properties and learned behaviors, creating uniquesignals difficult to impersonate while enabling continuous, transparent authentication [4, 5, 6]. Advancesin eye-tracking, computer vision, and machine learning (ML) have enabled real-world gaze authenticationacross desktops, XR headsets, and cameras [7, 8]. However, challenges remain: individual gaze patternvariability, security-usability-accessibility trade-offs, and modern threats including presentation attacks,synthetic data, and adversarial ML [9, 10, 11]. Continuous data collection raises privacy concerns regardingcognitive and health inferences [12, 13].
This survey systematically reviews two decades of research across multiple academic sources including majordatabases (IEEE Xplore, Springer Link, ScienceDirect, ACM Digital Library, MDPI), conference proceedings,and preprint repositories. After deduplication and screening, 222 peer-reviewed papers on gaze-basedauthentication were retained and grouped along three axes: methodology (physiological/behavioral/hybrid),architecture (hardware/software/cloud/edge/embedded), and evaluation/security (metrics, PAD, usability).Unlike existing HCI-focused surveys, this work emphasizes engineering trade-offs, security threat models,and systematic comparative analysis [14]. Inclusion criteria prioritized gaze-based verification/identification
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studies with clear protocols and metrics, plus system implementation and usability papers. Exclusion criteriaremoved gaze estimation-only works, non-peer-reviewed sources, and methodologically insufficient studies.Studies were mapped to datasets (GazeBase, GazeBaseVR, Gaze360, LPW) [15, 16, 17, 18] and attackmodels, enabling systematic comparisons and gap identification. Despite extensive research, the field lacks acomprehensive engineering-based taxonomy combining approaches, architectures, and security evaluations[5, 12]. This review addresses this gap with a three-dimensional framework encompassing methodologies,system architectures, and evaluation/security considerations, supported by practitioner-focused tables anda research agenda.
Themain contributions of this review include a systematic literature review of 222 peer-reviewed articles frommultiple academic sources including major databases, conference proceedings, and scholarly repositories,providing comprehensive coverage of the field. We present a tri-dimensional taxonomy structuring thefield by authentication methods, system architectures, and security/evaluation frameworks, which enablessystematic cross-approach comparisons. In addition, we conduct a capability analysis that maps existingtechnological capabilities, key constraints, and trade-offs, yielding an analytical perspective that extendsbeyond descriptive accounts. We identify research trends and future research directions through examinationof latest developments and practical application requirements. Finally, we provide practical guidelineswith recommendations for next-generation system development, including clear guidelines for constraintmitigation and methodology selection appropriate for specific deployment scenarios.
This survey offers comprehensive review of 222 peer-reviewed papers with three-dimensional categoriza-tion combining methodologies/architectures/evaluation, comparative analysis emphasizing trade-offs, andsystematic design guidance incorporating emerging Artificial Intelligence (AI)/Augmented Reality (AR)/edgecomputing trends. We propose a taxonomy addressing literature fragmentation through three dimensions:(1) authentication techniques—physiological patterns, behavioral dynamics, and hybrid fusion systems;(2) architectures—hardware-based, software-based, cloud-based, and embedded systems; (3) evaluationmethodologies—accuracy metrics, security assessment, and usability considerations. This framework enablessystematic comparison, gap identification, and informed design choices across applications. The surveystructure follows this framework: Section 2 reviews methodologies; Section 3 analyzes system architectures;Section 4 covers evaluation and security; Section 5 summarizes applications; Section 6 highlights challengesand future directions; Section 7 offers practitioner guidelines; Section 8 concludes.
Prior surveys examined gaze in security and HCI contexts, emphasizing interaction, privacy, and usabilityrather than unified engineering taxonomy [12]. Others focused on competitive evaluations or specificmethodological threads [5], while broader XR/biometrics surveys discuss gaze within multimodal authentica-tion but don’t systematize gaze-only landscapes [19]. This survey differs by: (1) introducing three-dimensionaltaxonomy spanning methodology, architecture, and evaluation/security; (2) operationalizing security throughthreat-centric views (PAD, liveness, synthetic/generative, adversarial ML, template security); (3) connectingmethodology to deployment constraints and usability; and (4) providing systematic comparative analysissupporting reproducibility and design choices.
2 Gaze-Based Authentication Methodologies
This section evaluates authentication schemes by our taxonomy’s first dimension, examining physiological,behavioral, and hybrid methods for extracting biometric characteristics from gaze signals. We analyzetheoretical foundations, real-world deployments, and comparative performance characteristics impactingsuitability for various application domains.
2.1 Physiological Gaze Patterns
Physiological gaze patterns leverage stable anatomical and neural characteristics of the human visualsystem that are difficult to consciously manipulate, providing robust biometric features for authenticationacross various conditions [5, 20]. The human eye’s anatomical structure provides distinctive, lifetime-stablebiometric features. Modern eye-tracking technology enables anatomical feature extraction during routinegaze tasks, combining anatomical and behavioral analysis. The key challenge involves extracting sufficientdetail from lower-resolution images while maintaining discriminatory power through advanced processingtechniques compatible with commercial eye-trackers. Iris structure analysis preserves characteristic texturalpatterns from muscle fibers, crypts, furrows, and pigment variations. While accuracy remains lower thandedicated iris devices, combining iris analysis with gaze verification enables multi-modal systems integratinganatomical and behavioral features [4, 21, 22, 23]. Pupil morphology examination analyzes shape, size, anddynamic properties showing individual variability, with properties like baseline diameter, asymmetry, andresponse characteristics facilitating verification using standard eye-tracking equipment [24].
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The oculomotor system’s biomechanical and neurological properties create individual-specific eye move-ment patterns that are difficult to counterfeit. These physiological characteristics, including muscle fibercomposition, neural organization, and sensory capabilities, form the basis for authentication features in-herently resistant to conscious manipulation or behavioral mimicry [20]. The oculomotor system exhibitsseveral distinctive characteristics suitable for authentication. Saccadic main sequence characteristics showsignificant individual differences in the velocity-amplitude relationship, with consistent slope, intercept, andvariability patterns over time serving as effective authentication signatures [20]. Smooth pursuit gain andlatency measurements reveal individual variability in tracking moving stimuli, where the pursuit gain (eyevelocity to target velocity ratio) and onset latency provide biometric markers reflecting neural processingcapacity that resist conscious manipulation [25].
Fixational eye movements (drift, tremor, microsaccades) reveal idiosyncratic characteristics difficult tocontrol intentionally, exemplifying involuntary aspects of ocular movement. These movements maintainvisual stability during fixation attempts, with individual differences in frequency, amplitude, directional bias,and temporal profiles providing unique biometric signatures. Microsaccades show particularly valuableauthentication properties through interindividual differences in rate, amplitude distribution, and directionalanisotropy. These properties exhibit intra-individual stability yet substantial inter-individual variability,making them well suited for authentication scenarios that require robustness against deliberate manipulation.However, authentication using fixational movements requires highly accurate measurement devices capableof discriminating small amplitude movements [20].
Pupil dynamics provide biophysiological information reflecting individual differences in autonomic nervoussystem function and cognitive processing. Pupil responses to light and cognitive demands create robustbiometric signatures that are largely involuntary and difficult to manipulate [26]. Pupillary light reflex features(response latency, constriction amount, recovery time) show individual variability with temporal consistency.Direct and consensual light reflexes demonstrate inter-individual differences in amplitude, duration, andsymmetry. These automatic responses resist conscious manipulation and remain robust to mental/emotionalstate variations, integrating easily into routine eye-tracking procedures [27]. Cognitive pupillary responsesreflect mental effort and attentional demands, showing individual differences in dilation magnitude, latency,and recovery dynamics. These involuntary physiological responses to cognitive challenges resist consciouscontrol while revealing individual cognitive processing patterns [28]. Hippus (spontaneous pupil fluctuationsunder stable illumination) exhibits individual oscillation frequencies, amplitudes, and temporal patternsreflecting neural regulation of pupillary function. These involuntary oscillations provide continuous biometricinformation resistant to conscious control, valuable for anti-spoofing applications. Analysis reveals distinctivefeatures including oscillation frequency, amplitude distribution, and temporal regularity [29].
2.2 Behavioral Gaze Dynamics
Behavioral gaze dynamics encompass learned eye movement patterns shaped by individual experience,cognitive style, and attention strategies [5, 30]. While humans share basic oculomotor mechanisms, gaze de-ployment shows significant individual differences due to learning experiences, cultural factors, and cognitiveprocessing strategies. Unlike physiological patterns reflecting anatomical traits, behavioral dynamics involvehigher-level cognitive processes in attention allocation and visual navigation. Individuals develop specificvisual exploration preferences for different stimuli and tasks, creating measurable behavioral profiles reflect-ing spatial attention preferences, temporal sequences, and task-specific strategies. Behavioral approachesoffer hardware robustness, calibration tolerance, and compatibility with less accurate devices, making themsuitable for consumer applications [31].
2.2.1 Fixation Pattern Analysis
Fixation pattern analysis reveals individual differences in visual attention allocation and information process-ing, creating biometric signatures [5]. This analysis quantifies spatial attention distribution and temporalallocation aspects including fixation duration, sequences, and attention transitions [32]. Patterns emergefrom interactions between bottom-up visual saliency and top-down cognitive control. Spatial fixation alloca-tion reveals individual preferences for attention distribution across visual stimuli, reflecting cognitive stylesand exploratory strategies. Individuals show consistent tendencies: some exhibit center-biased patternswhile others use peripheral exploration strategies. These spatial preferences demonstrate high inter-sessionconsistency, providing reliable authentication features analyzable through heat maps, center-of-mass com-putation, and statistical modeling [33]. Fixation clustering analysis reveals individual attention distributionstrategies. Some subjects exhibit tight clustering for detailed analysis, while others show diffuse patternsfor broad scene exploration. Clustering amount, dimensions, inter-cluster distances, and formation dynam-ics provide quantitative measures of attentional styles. Metrics like Davies-Bouldin index and silhouettemeasures enable precise attention pattern characterization [34].
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Fixation duration properties show individual differences reflecting cognitive processing time and informationretrieval strategies. Duration statistics (mean, variance, skewness) create time-based biometric signaturesThe consistency found within-subjects is in contrast to variability between users. Some users exhibit atrend for shorter durations reflecting fast processing, whereas others have longer durations reflectingdetailed information extraction. These distinguishable patterns are related to reading speed, processingability, attentional control, and task-related strategies [35]. The temporal aspects involve cognitive processesand behavioral patterns difficult to intentionally modify, thus allowing consistent biometric identificationfrom natural gaze behaviors [36]. Fixation duration patterns utilize statistical methods such as distributionfitting and machine learning models [37]. The analysis of sequential fixations reveals individual variabilityby changes in temporal dynamics and positional changes, reflecting higher-order cognitive processes suchas planning and attentional control. Computational methods such as Markov chain modeling, sequencealignment, and transition probability matrices are applied to measure unique exploratory patterns reflectinghigher-order cognitive processes difficult to manipulate [38]. Fixation density mapping generates heat mapdisplays of distributions of attention, revealing unique spatial patterns by aggregating locations and durationsto create holistic behavioral authentication profiles.
2.2.2 Saccadic Behavior Characteristics
Saccadic behavior varies systematically with exploration strategies, attentional control, and cognitive styles.Individuals show differences in amplitude distributions, directional biases, temporal dynamics, and coordina-tion with other movements. These features integrate learned strategic components with biomechanicalconstraints, yielding distinctive exploration profiles that reflect cognitive styles and visual habits [39]. Sac-cadic amplitude preferences reflect individual information acquisition strategies. Some prefer frequent smallsaccades for detailed local analysis, while others use longer saccades for rapid scene exploration. Amplitudedistribution characteristics (mean, variance, skewness) provide consistent individual attributes across viewingtasks, modulated by visual acuity, attention span, and processing rate [40]. Directional saccadic patternsreveal individual preferences in eye movement directionality during visual exploration, reflecting cognitiveapproaches and culturally transmitted behaviors. Examining saccade direction distributions—horizontalversus vertical preferences, clockwise versus counterclockwise tendencies, and visual field quadrant asym-metries—reveals individual biometric markers. These directional preferences result from reading habits,cultural spatial attention models, occupation-based exploration strategies, and inherent spatial cognitivedifferences, forming consistent behavioral signatures across viewing conditions and stimulus types [41].
Saccadic velocity profiles, although ultimately constrained by physiology, exhibit characteristic patterns withpronounced inter-individual differences that reflect the oculomotor system’s biomechanical properties andassociated neuronal control processes. Profile parameters—including acceleration and deceleration intervals,overall duration, and symmetry—vary across individuals in ways that are informative for authentication.These features capture automatic components of the eye-movement control system [42]. Inter-saccadicinterval analysis examines the timing between successive saccades, revealing individual differences in visualprocessing speed, decision making, and cognitive control. Summary statistics such as means, variances,distributional skewness, and preferred interval ranges yield temporal identifiers that mirror processingcapacity and control strategies. Such temporal variations indicate efficiency of visual processing, capacity toreorient attention, and choice of cognitive strategy, producing robust behavioral signatures that are difficultto willfully manipulate [43]. Overshoot and undershoot tendencies further expose individual accuracy inoculomotor control and motor strategy. Systematic propensities to overshoot or undershoot—quantified byfrequency, magnitude, and the nature of corrective responses—form profiles that remain stable across ses-sions and tasks, providing distinctive attributes (e.g., error magnitude, directional consistency, compensationspeed, and control strategy) that are particularly useful for authentication because they reflect automaticallycontrolled oculomotor dynamics not amenable to intentional manipulation [44].
2.2.3 Scanpath and Visual Search Method Analysis
Scanpath analysis characterizes inter-individual differences in visual exploration by systematically examiningsequences of eye movements during visual tasks. By integrating spatial, temporal, and sequential gazefeatures, it yields coherent behavioral profiles that describe cognitive strategies and perceptual biases.Emergent scanpath patterns arise from interactions among stimulus properties, task demands, and cognitivepredispositions, capturing strategic visual behaviors that are difficult to modulate—including explorationstyle, cognitive bias, and variation in attentional control. The method produces broad behavioral signaturesspanning spatial coverage, temporal dynamics, sequential structure, and adaptive processes that supportinformation retrieval [45].
Scanpath similarity measures quantify visual search behavior across users and sessions to support construc-tion of computational models. The Needleman–Wunsch algorithm computes optimal sequence alignments,
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revealing common subsequences and variations in exploratory behavior. The Levenshtein distance measuresthe minimum operations required to transform one scanpath into another, capturing structural similarity anddiscrepancies in exploration strategy. Specialized comparison techniques include dynamic time warping fortemporal variability, string-based encodings for sequential structure, and graph-based methods for spatialrelations. These approaches detect characteristic exploration patterns while accommodating timing variabil-ity and spatial imprecision. Similarity measures enable authentication mechanisms to discriminate amongusers while remaining robust to within-user session variability [46]. The effectiveness of visual search can beanalyzed via the ratio of search effort to search information. In this work, we consider search effectiveness,coverage patterns, and completion rate to examine individual variation in visual search strategy. Variationsin inattentional control and strategic search behaviors serve as individual behavioral signatures [47].
Patterns of attention transition investigate visual attention structure that controls gaze direction allocationand adjustment during exploration activities. These patterns consist of revisitation propensities, systematicor opportunistic exploration of novel regions, and strategic scene exploration that reflect individual cognitiveprofiles and perceptual styles. Patterns can be characterized by individual differences in working-memoryutilization, curiosity levels, novelty-seeking tendencies, and preferences for global versus local explorationprotocols. The exploitation–exploration trade-off leaves distinctive behavioral traces valuable for verification.Analyses extract time and rate of revisitation, the spatiotemporal organization of exploration sequences, andadaptive responses to exploratory demand or scene complexity, thereby revealing the cognitive processesgoverning visual attention control [48].
Temporal scanpath characteristics assess the timing of visual exploration, including exploration duration,information-gathering rate, and attention allocation. Analyses reveal inter-individual differences in processingspeed, cognitive efficiency, and information-seeking strategies. Some participants exhibit rapid, effectiveexploration, whereas others adopt systematic, attentive approaches. These temporal descriptors delineateexploration rhythm, distributions of attentional concentration, transition rates, and the temporal organizationof fixation sequences, thereby characterizing distinct cognitive processing styles [49]. Scanpath complexitymetrics capture structural properties of visual exploration such as path length, convex hull area, and fractaldimension. These measures provide compact summaries of individual exploration strategies, highlightingspatial and organizational properties relevant for authentication. Path length indexes exploration speed andefficacy; convex hull area reflects spatial coverage (dense versus diffuse allocation); and fractal dimensionindicates self-similar exploration patterns and hierarchical attention structure, reflecting cognitive processingpropensities and learned strategies [17].
2.2.4 Task-Specific Gaze Behaviors
Task-specific gaze behaviors examine individual patterns of gaze motion within specialized visual tasks,yielding contextually interpretable biometric features rooted in expertise-oriented cognitive and perceptualstructures optimized for those tasks. While general gaze patterns provide interpretable biometric content,the greatest discriminability typically arises when work-oriented tasks are designed to target particularcognitive processes or perceptual abilities [50].
Reading is one of the most thoroughly studied task-specific gaze paradigms for authentication [6, 28, 51]. Itelicits highly structured eye-movement patterns with pronounced individual differences that reflect cognitiveprocessing, linguistic competence, and practiced reading routines. Key biometric indicators include readingspeed (visual processing and comprehension capacity), regression patterns (error-correction strategies),line-to-line transitions (spatial search and attention management), and word skipping (reading skill andlexical familiarity). Together, these behaviors expose individual strategies for information extraction andcomprehension [51].
Research on visual search behavior examines individual differences in target-object identification withincomplex environments. It reveals characteristic patterns in attention allocation, spatial search strategies,and decision processes that reflect cognitive abilities and learned routines. Key factors include searchefficiency (objective evaluation of information detection and exploration inhibition), the systematic–randomsearch spectrum (stringently systematic versus adaptive, opportunistic methods), and the use of peripheralvision (attentional abilities and visual-field strategy). Collectively, these traits provide informative biometricindicators of cognitive abilities and search strategies [52].
Menu navigation structures in graphical user interfaces reflect individual interaction styles and reliance onspatial memory. This perspective is valuable for describing how users traverse large information hierarchiesand make decisions from well-structured visual displays. Analyzing gaze during menu selection—coveringexploratory behavior, decision strategies, and efficiency measures—yields contextually grounded biometricmarkers for interface authentication that accommodate individual differences in spatial comprehension,
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memory use, and interaction modes. Navigation methods further differentiate systematic versus opportunis-tic information gathering: some users employ structured, hierarchical exploration, whereas others exhibitgoal-directed, direct navigation. Decision behavior exposes individual differences in the cognitive processesunderlying evaluation and choice, including time spent considering alternatives, the criteria applied duringevaluation, and confidence levels expressed during selection [53].
Free viewing of visual stimuli reveals inter-individual differences in aesthetic preferences, attention-allocationstrategies, and visual processing styles shaped by personal interests, social context, and learned viewinghabits. Gaze behavior during image viewing can therefore identify distinctive features linked to individualvisual preferences and cognitive styles. Salient indicators include preferred visual attributes, attentiondistributions concentrated on specific scene components, and exploratory tendencies that mirror one’sprocessing routines and aesthetic evaluation strategies. Examples include a preference for faces overobjects or settings, a tendency toward fine-grained inspection rather than global scene comprehension, andcharacteristic temporal attention-allocation dynamics during unconstrained viewing, all of which reflectdifferences in visual interest, aesthetic sensitivity, and cognitive processing strategies [54]. Table 1 providesa comprehensive comparison of these methodological approaches.

Table 1. Comparative Analysis of Gaze-Based Authentication Methodologies
Methodology Advantages Disadvantages Performance Characteristics Use Cases

Physiological Gaze Patterns High stability, Difficult to forge,Consistent across sessions Limited by hardware precision,Requires calibration,Sensitive to eye conditions
Generally stable performance,Hardware-dependent accuracy High-security applications,Laboratory settings

Behavioral Gaze Dynamics Natural interaction,Continuous authentication,Context-aware
Variable performance,Learning required,Environmental sensitivity

Calibration-tolerant,Adaptive over time Mobile devices,Interactive systems
Hybrid Approaches Balanced performance,Adaptive capability,Robust to variations

Increased complexity,Greater computational demands,Integration challenges
Combined benefits ofmultiple approaches Commercial systems,Multi-platform deployment

2.3 Hybrid Approaches
Hybrid approaches combine physiological and behavioral gaze features to outperform mono-modal sys-tems. Physiological cues contribute stability, whereas behavioral cues provide environmental adaptability;together, their complementary strengths offset individual limitations [55]. The hybrid approaches requirean understanding of feature synergies: physiological ones provide temporal stability, though susceptibleto hardware variation, while behavioral ones provide flexibility, though prone to variation over time. Thehybrid approaches stabilize such properties using fusion mechanisms and adaptive approaches, yieldingenhanced security, usability, as well as flexibility in deployment [56].
2.3.1 Physiological-Behavioral Feature Fusion
Fusion of physiological and behavioral characteristics entails higher-level fusion methods juggling computa-tional constraints and feature redundancies. Physiological characteristics operate in millisecond time scales,which require high-grade measurements, while behavioral characteristics allow longer time intervals in whichmeasurement error is permitted. The difficulty is in integrating heterogeneous sources without losing uniquefeature properties of sources [57].
Efficient fusion requires feature normalization for measurement scale compatibility, dimensionality reduc-tion for high-dimensional spaces, and temporal alignment for different acquisition scales. Fusion modelsmust address feature redundancy and correlation while extracting complementary information to maintaindiscriminative capability [58]. Early fusion combines features at the feature level into unified vectors [59].Late fusion maintains separate processing streams, combining outputs at the decision level through votingor meta-learning [60]. Hybrid fusion combines both approaches with intermediate junctions [61]. Adaptivefusion dynamically adjusts feature importance based on context, users, or environment [62].
2.3.2 Multi-modal gaze-based authentication
Multi-modal strategies extend beyond gaze-only features by incorporating additional biometric modalitiesfor improved security and robustness. Combining gaze with other modalities enhances performance,strengthens spoofing resistance, and enables flexible deployment across various hardware configurationsand user populations [63].
Multi-modal gaze authentication creates complex biometric profiles more difficult to imitate than single-modality systemswhile incorporating redundancy for steady performancewhen onemodality is unavailable or
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under attack. Appropriate modality selection relies on hardware compatibility, computational requirements,user acceptance, and application-specific security requirements. Optimal multi-modal systems requirethorough investigation of biometric characteristic interactions and sophisticated fusion methodologies[64]. Gaze-face fusion leverages simultaneous extraction of facial and gaze data through eye-trackingtechnology, strengthening security while utilizing available hardware without requiring additional sensors.This combination provides complementary biometric information, merging physiological facial structureaspects with behavioral gaze movement aspects.
An integrated single-camera setup can capture gaze and facial characteristics simultaneously, ensuringprecise temporal alignment and reducing typical multimodal synchronization challenges. This configurationsubstantially improves robustness against spoofing, since concurrently reproducing facial characteristicsand natural gaze behavior is difficult—especially under adverse conditions involving illumination changes,partial occlusions, or hardware variability [38, 65]. Gaze–voice fusion combines gaze-based verificationwith speaker recognition, providing a multimodal solution well suited to scenarios that involve spokeninteraction. The approach leverages the intrinsic coupling between speech production and visual attention,thereby strengthening authentication and enhancing user experience. Empirical evidence shows thatgaze behavior systematically varies during speech, reflecting cognitive load, linguistic formulation, andidiosyncratic communication patterns. This makes the framework attractive for voice-activated agentsand interactive interfaces, enabling seamless authentication during natural use without explicit biometriccapture. Joint use of voice and gaze further increases robustness by impeding simultaneous spoofing of vocalcharacteristics and concordant gaze behavior, while supporting continuous authentication over extendedinteractions [41, 66].
Integrating gaze with keystroke dynamics enables construction of behavioral profiles for computer au-thentication by exploiting the coupling between visual attention and motor coordination during text entry.Empirical studies show that individuals exhibit characteristic gaze patterns while typing that correlate withtheir typing style, visuo-motor coordination, and cognitive strategies for text production. This multimodalapproach supports authentication in conventional computing workflows by accommodating natural typingvariability and enabling transparent verification during routine interaction, without explicit biometric capture.Joint modeling of gaze and keystrokes strengthens security by making it difficult to simultaneously spooftyping dynamics and the corresponding attention profile, while supporting continuous authentication overprolonged text-entry sessions [67].
Gaze–gesture fusion pairs eye-movement patterns with hand-gesture detection to provide a multimodalauthentication mechanism well suited to touchscreen devices and gesture-driven interfaces. It exploits thenatural synchrony between visual attention and manual action during interaction. Studies show that usersexhibit characteristic eye–hand coordination patterns indicative of motor control, spatial cognitive skills, andinteraction habits acquired through experience with diverse devices and interfaces. This modality pairing isparticularly relevant for phones, tablets, and interactive displays, enabling authentication during ordinaryuse without explicit biometric capture. Joint modeling of gaze and gestures improves security by makingit difficult to reproduce both gesture dynamics and concordant gaze patterns, while permitting seamless,in-the-flow authentication [68].
2.3.3 Adaptive Feature Selection
Adaptive feature selection enables dynamic adjustment of feature deployment in hybrid authenticationsystems to accommodate changing conditions, user characteristics, or security demands, ensuring optimalperformance across diverse contexts. Physiological and behavioral characteristics have different utilitydepending on environmental parameters, hardware capacity, temporal variations, and security requirements.Adaptive systems continuously assess feature performance, enabling deployment adjustments to maintainauthentication effectiveness through dynamic selection strategies [5, 62].
Efficient adaptive feature selection involves detailed knowledge of a range of determiners such as envi-ronmental, user, time, and security factors. Monitoring frameworks are applied in systems for featurequality assessment, aided by machine learning methods to adapt selection in terms of specified measuresof performance. Decision frameworks enable authentication accuracy, computational intensity, usability,and security limitations [62, 69]. Context-aware feature selection adjusts relevance of gaze features toenvironmental conditions, task demands, or user states, using monitoring methods to evaluate context andthen adapt feature employment. For instance, systems prefer physiological features in adverse conditionswhere external factors obscure behavioral ones, or switch to use behavioral ones where hardware accuracyis low. These are applied as environmental sensors, instruments of performance measure, and machinelearning methods to conduct optimal adaptation protocols [70].
User-adaptive methods enable authentication platforms to distinguish peculiar characteristics of individual
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users so as to adapt procedures to suit differences in gaze pattern feature attributes, stability, and distinctness.This adaptation improves effectiveness by considering that users have different levels of performance amongdifferent feature categories based on physiological attributes, interaction modes, and behavior patterns.User-adaptive platforms utilize learning methods to determine optimal feature combination sets in spite ofprotecting against vulnerabilities exploitable from personalized action [3].
Temporal adaptation dynamically adjusts feature selection to remain aligned with enduring changes in auser’s gaze behavior—arising from aging, health status, experiential learning, or environmental shifts—overlong deployment horizons. These mechanisms recognize that oculomotor and behavioral attributes evolveover time and therefore monitor trajectories of change. Temporally adaptive systems incorporate monitoringtechnologies that discriminate legitimate long-term drift from potential security incidents, adapting proce-dures to preserve security while accommodating genuine behavioral change. They employ machine-learningmodels that represent user attributes on longer time scales to defend against attacks [15, 16]. Security-focused adaptation tunes feature selection according to threat assessments and/or security policy directives,leveraging dynamic controls that modulate authentication strength with current risk. High-security contextsemphasize features robust to spoofing, whereas routine operation prioritizes user convenience, balancingsecurity imperatives against usability considerations.
Security-oriented adaptation comprises threat assessment procedures that identify vulnerabilities, evaluatethe security posture, and make pragmatic feature-selection decisions that preserve required protection whileavoiding unnecessary user burden. These mechanisms build threat intelligence, perform behavioral anomalydetection, and conduct risk evaluation to dynamically adjust authentication workflows, enabling continuousresponsiveness to evolving threat landscapes without compromising user acceptance or usability [9].

Table 2. Taxonomic Framework Application (Representative Examples)
Study (Year) Methodology Architecture Evaluation Focus Dataset/Subjects Headline Metrics

Komogortsev et al.2010 [7] Physiological(OPC) Hardware (desk-top IR) EER, liveness Lab; tens Low EER; OPCliveness feasibility
Holland & Ko-mogortsev 2011[6]

Behavioral (read-ing scanpaths) Hardware (desk-top IR) Verification(EER/FRR) Lab; tens Distinctive scan-paths; mid EER
Yoon et al. 2014[34] Behavioral (medi-cal imaging view-ing)

Hardware (desk-top IR) Biometric feasibil-ity Medical imaging;15 Gaze patterns asbiometric
Lohr et al. 2023(GazeBaseVR) [16] Dataset contribu-tion (VR) HMD (embedded) Dataset for longi-tudinal studies 407 subjects; VRtasks Large-scale VRgaze dataset
Komogortsev et al.2012 [71] Physiological(OPC) Hardware (desk-top IR) Verification + PAD Lab; tens Stable OPC fea-tures; PAD signals
Eberz et al. 2016[29] Behavioral (insiderthreat) Hardware (desk-top IR) Insider detection Lab; tens Insider exposurevia gaze
Sluganovic et al.2016 [72] Behavioral(challenge-response)

Hardware (desk-top IR) CR liveness; EER Lab; tens Fast CR; improvedPAD
Song et al. 2016(EyeVeri) [73] Behavioral (mo-bile) Software (smart-phone) Usability + EER Field/lab; dozens Practical mobileauth
Zhang et al. 2018(IMWUT) [33] Behavioral (im-plicit stimuli) Software (mo-bile/ubiquitous) Continuous auth In-situ; tens Feasible continu-ous auth
Boutros et al.2020 (HMDfusion) [38]

Hybrid (periocu-lar/iris+gaze) HMD (embedded) Fusion gains; PAD HMD; variable Fusion boostsrobustness
Zhu et al. 2020(BlinKey) [74] Behavioral (blink +gaze) HMD/VR (embed-ded) Two-Factor Au-thentication (2FA);usability

Lab; dozens Low friction;higher security
Jeon et al.2025 (Pre-AttentiveGaze)[75]

Dataset contribu-tion Not specified Dataset for authresearch Large-scaledataset Momentary visualinteraction data

Lohr et al. 2025[76] Hybrid (gaze +periocular fusion) Software/Hardware Authenticationfusion Methodologyvalidation Gaze-periocularfusion framework

The methodological framework delineates the complementary strengths and inherent limitations of physio-logical, behavioral, and hybrid approaches to gaze-based authentication. Figure 1 presents a comparativevisualization of the three primary methods, highlighting distinctive attributes, performance trade-offs, and
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suitability across implementation contexts. Table 2 illustrates the application of the taxonomic framework torepresentative studies in the literature.

Figure 1. Comparison of Gaze-Based Authentication Methodologies

This comparative study (Table 2) explains the distinct characteristics and trade-offs associated with differentgaze-based authentication approaches. Physiological approaches offer considerable temporal stability;yet, they require the utilization of special-purpose hardware. Comparably, behavioral approaches provideversatility and malleability using standard equipment, while the hybrids reach excellent performance byskillfully combining heterogeneous feature types. The choice of the individual methodology relies on theparticular needs of the application at hand, available hardware resources, and security constraints.
Human eye movement exhibits substantial variability and complexity, resulting from physiological constraintsin the oculomotor system, cognitive processes controlling attentional dynamics, and external variablesaffecting visual behavior across tasks. Biometric features in eye movement patterns result from intrinsiccharacteristics distinguishing users with adequate consistency for authentication across temporal contextsand environmental conditions. These features combine anatomical characteristics (extraocular muscleproperties, neuronal circuit configurations, retinal structural variations) with acquired behavioral patterns(reading behaviors, visual search strategies, attention allocation processes, cognitive styles) developed overtime [77]. Gaze-pattern variability yields discriminative cues for authentication across multiple dimensions:temporal (fixation durations, saccadic intervals), spatial (scanpath geometries, fixation distributions), kinetic(velocity profiles, acceleration trends), and physiological (pupil-size changes, blink rates). Understandingand characterizing these properties underpins the design of viable authentication algorithms that leveragebiometric information in human gaze despite variability from fatigue, affective state, task demands, andenvironmental conditions [78]. Fixations are epochs of relative ocular stability duringwhich visual informationis acquired and processed. Duration depends on task needs, stimulus complexity, and processing speeddifferences. The spatial organization of fixations expresses tendencies in visual attention distribution,information processing tactics, and perceptual focuses. Experimental results reveal that fixation patternshave both stimulus-driven features and individual characteristics that serve as biometric signatures [32, 79].
Saccades are rapid ocular movements that shift visual attention between fixation points, characterized byshort durations and high speeds. Saccadic movement parameters such as amplitude, velocity profiles, anddirectional tendencies are dictated by oculomotor system characteristics, which vary between individualsdue to differences in muscle fiber makeup, neural control mechanisms, and biomechanical properties.Principal sequence parameters demonstrating the relationship between saccadic velocity and amplitudeshow variability that is reliably constant across time, making them effective biometric parameters forauthentication. Additionally, saccadic latency and overshoot characteristics lend distinctiveness to gazesignatures, while accumulated microsaccades during fixation periods add discriminative information [80].
Smooth eye pursuits allow tracking of moving visual stimuli and show differences in gain and latencycharacteristics, reflecting brain control processes and oculomotor coordination capacities. Smooth pursuitgain, as the eye velocity to target velocity ratio, differs in individuals and reflects neural processing efficiencyand motor control precision, with patterns showing under-compensation or over-compensation. Pursuitlatency, the time between target movement start and smooth eye movement beginning, demonstratespersistent differences over sessions, acting as biometric markers. These parameters increase biometric data indynamic stimulus systems, particularly when usedwith other gaze characteristics to enable multi-dimensionalauthentication processes [78].
Pupil dynamics are biometric features that mirror physiological and cognitive states through measurablechanges in pupil size and response behaviors. Pupillary response parameters, including latency, amplitude,and recovery patterns, show differences that enhance authentication effectiveness when combined withother gaze-related features [67, 81]. Stability and uniqueness in gaze patterns over time are important
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considerations in biometric recognition system deployment, as these traits directly impact effectiveness andreliability in real-world applications. Longitudinal research suggests that despite variability in gaze patternsdue to fatigue, mood state, environmental conditions, age variations, and visual acuity changes, inherenttraits remain stable enough to enable reliable recognition. Stability dynamics vary at the feature level,with physiological quantities such as saccadic main sequence parameters and oculomotor plant parametersshowing higher stability compared to behavioral features such as scanpath biases and attention allocationstrategies. This variability necessitates careful feature selection and adaptive algorithms in long-term studydesigns [82].
2.4 Basic Biometric Authentication Concepts
Biometric systems rely on universality, distinctiveness, permanence, and collectability [83]. For gaze, univer-sality generally holds for users with functional vision; distinctiveness has been shown via fixation, saccadic,scanpath, and pupillary features [24]; permanence is higher for physiological cues (e.g., main sequence,smooth pursuit) than for behavioral patterns, motivating adaptive modeling across time scales [69]; andcollectability has improved with modern eye tracking but remains sensitive to environment and hardware[81].
Two stages, enrollment and verification, constitute the authentication process adopted in gaze-basedsystems. Enrollment involves feature extraction of characteristic patterns of enrolled users in controlledenvironments, where specific features are extracted for biometric templates during subsequent verification.Success depends on the quality and completeness of enrollment data, which requires careful stimulusdesign to elicit informative gaze responses; standardized acquisition protocols; feature-extraction pipelinesthat produce discriminative, efficient representations; and template-construction procedures that yieldrobust models [67]. Verification compares newly acquired gaze patterns against pre-enrolled templates toestablish identity, using computational methods that balance accuracy, latency, and longevity. Algorithmsmust compensate for inherent variability in gaze due to inter-user behavioral differences, environmentalperturbations, andmeasurement noise, so as to separate legitimate users from impostors. Similarity measuressuch as Euclidean distance, correlation, and dynamic time warping are commonly used for template matching,often coupled with classifiers—e.g., support vector machines, neural networks, or ensemble methods—thatproduce confidence scores indicative of match likelihood. Advanced systems integrate feature evaluation,template matching, and final classification with adaptive decision thresholds governed by security policyand observed user behavior [84].
2.5 Security and Threat Framework Considerations
The security domain encompasses traditional biometric vulnerabilities alongside new attack forms especiallyapplicable to eye-tracking technologies. Understanding these vulnerabilities is essential for developing robustsystems operating in risky environments [84]. Presentation attacks represent a major challenge throughcomplex efforts to mimic natural user gaze behaviors via diverse technological means. Unlike other biometricapproaches based on physical artifacts, gaze-based attacks involve sophisticated methods including videoreplay interventions, synthetic pattern generation through machine learning, mechanical simulation devices,or hybrid methods. Gaze pattern persistence makes detection difficult, requiring mimicry of both spatialfeatures and temporal dynamics [9, 10]. Deep learning techniques for synthetic data generation introducenew possibilities for creating artificial gaze patterns that may deceive systems. GANs, VAEs, and otheradvanced approaches can produce realistic gaze sequences mimicking legitimate patterns by learning fromlarge datasets. These AI-generated attacks pose challenges through adaptation to different users, temporaldependencies, and evolution to counter detection mechanisms. This sophistication necessitates detectionmechanisms identifying subtle artifacts, statistical anomalies, and physiological implausibilities [85, 86].
Protecting gaze-based biometric templates is critical because they encode detailed behavioral informationand may implicitly reveal sensitive cognitive traits or health indicators. To secure storage and transmis-sion, systems should incorporate strong encryption, rigorous key management, and privacy-preservingmechanisms to prevent unauthorized disclosure or inference of individual data [87]. The continuous natureof gaze-based authentication introduces security concerns distinct from discrete, event-based systems,particularly around session management and temporally orchestrated attacks. In continuous monitoring,challenges include session hijacking (taking over an already authenticated session); progressive reconstruc-tion of the authentication template via incremental changes in eye-movement patterns over time; adaptiveattacks that continually modify their strategy to evade detection by blending with system responses; andthe need to validate temporal consistency to ensure reliability over extended interactions. Addressing theseissues requires advanced security frameworks that sustain long-duration authentication while adapting tolegitimate user variability and changing environmental conditions [88]. Eye-tracking hardware also presents
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environmental vulnerabilities, including sensitivity to infrared interference, ambient illumination changes,and occlusions of sensors—factors that adversaries could exploit to mount denial-of-service attacks [89].
The privacy implications of gaze-based authentication extend beyond conventional biometric concerns toencompass behavioral and cognitive inferences drawn from eye-movement data, which can, in principle,reveal sensitive personal traits. Such data can reflect reading proficiency, information-processing speed,attentional deficits, neurological disorders, affective state, and even personal interests or preferences. Thesecharacteristics have significant implications for data minimization and purpose limitation, informed consent,and the risk of function creep, whereby authentication data may be repurposed for unauthorized secondaryuses. Given the breadth and sensitivity of gaze data, a comprehensive evaluation of privacy-preservingstrategies and compliance with regulatory requirements is essential [12, 13].
2.6 Performance Evaluation Metrics
Gaze-based authentication requires comprehensive evaluation across both security and usability dimensions.Classical biometric metrics (False Acceptance Rate (FAR), False Rejection Rate (FRR), and Equal Error Rate(EER)) provide the foundation, but the temporal dependence of gaze behavior, its behavioral variability,and sensitivity to environmental conditions necessitate additional, tailored procedures [14]. FAR quantifiesincorrect impostor acceptance and thus indicates vulnerability to unauthorized access. FAR evaluationencompasses random impostor attempts, presentation attacks using artificial patterns, and zero-effort trialswithout privileged knowledge [90]. FRR measures incorrect denial of legitimate users, critically affectingusability. Gaze-based FRR evaluation must account for behavioral variability from fatigue, environmentalchanges, aging, medications, and emotional states. Temporal pattern changes require adaptive algorithmsbalancing legitimate user evolution with security [91].
EER identifies the operating point where FAR equals FRR, enabling system comparison. While EER providesvaluable comparative metrics, it may not reflect performance in asymmetric security scenarios where falseacceptance and rejection costs differ. EER interpretation requires careful consideration of testing conditions,population diversity, and environmental factors [92]. Detection Error Tradeoff (DET) curves analyze FAR-FRRtrade-offs across decision thresholds, providing insights into performance across threat models, populations,and environments. DET curve shape and position indicate system robustness and discriminability, enablingalgorithm and configuration comparison [93].
Usability metrics assess practical deployment aspects determining user acceptance and system viability.Authentication time represents a critical factor, requiring balance between data collection needs and userexpectations. Additional considerations include calibration frequency and system complexity [94]. Calibrationrequirements represent critical usability considerations that can determine deployment success. Calibrationfrequency directly affects user acceptance and system practicality. Complex processes create adoptionbarriers, particularly for users with limited technical expertise. Modern systems focus on reducing calibrationburden through implicit calibration and adaptive algorithms [12].
System robustness evaluation requires testing across diverse user populations and environmental conditions.Performance must be demonstrated across different visual characteristics, cultures, technical expertiselevels, and external conditions including illumination changes and mobility impairments [72].
3 Frameworks and Methods for Implementation
This section explores architectural strategies across hardware, software, cloud, and embedded systems, eachproviding viable implementations for different domains [86, 95]. Architecture evolution reflects computingtrends including sensor democratization, ML advancement, and cloud/edge emergence. Modern systemsbalance accuracy, efficiency, cost, convenience, privacy, and security trade-offs. Understanding architecturesenables informed technology selection and deployment strategies [86, 95]. Table 3 compares architecturalapproaches, characteristics, and applications.
3.1 Hardware-Based Systems
Hardware-based systems utilize sophisticated eye-tracking technology with specialized infrared cameras,illumination, and signal processing for high-accuracy authentication. These systems achieve superior mea-surement precision and temporal resolution but require specialized sensors and calibrated optics, limitingdeployment flexibility while meeting stringent security requirements [96, 97]. Performance gains involvetrade-offs including greater investment requirements, implementation complexity, environmental sensitivity,and limited deployment versatility, making them suitable for environments prioritizing security and accuracyover deployment convenience [98].
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Table 3. System Architecture Comparison for Gaze-Based Authentication
Architecture Type Hardware Requirements Performance Characteristics Deployment Complexity Typical Applications

Hardware-Based Dedicated eye trackers,IR cameras,Specialized sensors
High precision,Controlled conditions High Research labs,High-security facilities

Software-Based Standard cameras,Computational resources Variable precision,Algorithm-dependent Medium Desktop applications,Kiosks
Cloud-Based Basic sensors,Network connectivity Scalable processing,Network-dependent Low Web services,Mobile apps
Embedded Integrated sensors,Limited processing Resource-constrained,Optimized algorithms Medium Smartphones,Wearables,IoT devices

3.1.1 Desktop Eye-Tracking Systems
Desktop eye-trackers provide high precision and consistency in controlled environments through advancedoptics, calibration, and signal processing. Systems range from remote tracking allowing head movementto head-stabilized configurations maximizing accuracy [96, 97]. Infrared eye trackers use near-infraredcameras to capture high-definition ocular images while suppressing ambient light effects. Strategic infraredillumination creates corneal reflection patterns enabling accurate gaze estimation through sub-pixel pupiland reflection localization, providing ambient light tolerance, user comfort, and robust feature detection[96]. Modern desktop eye-tracking achieves high spatial accuracy and temporal resolution, enabling so-phisticated authentication algorithms with automatic calibration and cross-user tracking accuracy. Desktopconfigurations require controlled environmental conditions including stable lighting and minimal infraredinterference. While less mobile than portable alternatives, they provide superior authentication accuracy,making them suitable for high-security applications and research environments prioritizing precision overconvenience [99].
3.1.2 Mobile andWearable Eye-Tracking Devices
Portable eye-trackers combine wearable technologies for mobile gaze authentication across diverse settings,requiring energy efficiency, miniaturization, and environmental ruggedness while balancing authenticationeffectiveness with usability factors like battery life and ease of use. Advances in miniaturization and energy-efficient components enable natural operational environment deployment [100]. Head-mounted trackersmaintain rigid eye-sensor geometry, achieving desktop-like accuracy with mobility through compact infraredcameras and efficient lighting with stringent calibration to maintain precision despite mechanical constraints[101]. Integration into smart glasses and XR headsets enables Virtual Reality (VR) environment authenticationand supports foveated rendering [18, 102]. Portable eye-tracking units face technical challenges includingpower optimization, thermal control, and mechanical robustness requiring innovative engineering solutions.Power control techniques with variable sampling rates and sleep modes enable operation for extendedperiods while maintaining authentication effectiveness. Mechanical robustness requires designs maintainingcalibration despite motion, vibrations, and mechanical strains in portable contexts [103].
3.1.3 Webcam-Based Gaze Estimation
Webcam-based systems utilize commercial cameras with specialized software algorithms for gaze directiondetermination, providing reduced hardware investment and broader deployment opportunities with accuracytrade-offs compared to specialized eye-tracking devices. These systems represent an effective compromisebetween high-accuracy specialized systems and deployable authentication techniques, leveraging ubiqui-tous consumer cameras to provide authentication capabilities with minimal hardware investment whileusing complex algorithms to extract biometric information from lower-precision sensors [104]. Consumerwebcam adaptation extracts gaze signals from standard Red-Green-Blue (RGB) cameras using ComputerVision/Machine Learning (CV/ML) techniques that compensate for limited resolution, optics, and illumination.Reported accuracy (often a few degrees) is sufficient for many authentication scenarios without special-ized hardware, with performance shaped by camera quality, lighting, and algorithm choice. Approachesinclude appearance-based mappings, geometric landmark/head-pose estimation, and hybrids that improverobustness [105]. Advanced deployments showcase effective performance using off-the-shelf camerasand browser-based environments, with machine learning approaches improving system robustness acrossdifferent hardware setups. Smartphone front cameras enable mobile gaze estimation, although precision isbounded by optical and processing constraints. Head-pose estimation and gaze calculation can be enhancedwith RGB-D sensors by utilizing geometric depth information [106, 107, 108].
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3.2 Software-Based Systems
Software-centric gaze authentication relies on algorithmic methods rather than special-purpose hardware,using machine learning, computer vision, and signal processing techniques to glean gaze information fromcommercial cameras. Software-centric methods enable greater deployment variety and keep authenticationaccuracy in acceptable ranges through higher-level algorithmic processing of sensor output [18, 102, 109].Software-centric methods offset hardware limitations by leveraging higher-level feature extraction, patternrecognition, and adaptive learning. This approach reduces hardware cost, increases deployment flexibility,improves environmental robustness, and enables continual performance improvements via software updates.These methods leverage advances in machine learning to deliver user-adaptive algorithms that maintainrobust authentication across diverse deployments [102].
3.2.1 Algorithmic and Real-Time Approaches
Algorithm-based systems develop detailed mechanisms for feature extraction and classification to deliverreliable authentication despite hardware constraints. The shift from hardware-centric to software-drivenmethods enables broader deployment scenarios through machine-learning techniques that adapt to specificusers and environments. Advanced computational approaches mitigate hardware limitations while preservingsecurity across heterogeneous platforms [110]. Deep learning uses convolutional neural networks to learnmappings fromocular imagery to gaze vectors in end-to-endmodels. These techniques automatically discoveroptimal feature representations, eliminating manual feature engineering while achieving comparable accuracywith reduced calibration needs. Advantages include automatic adaptation across cameras and resolutions,robustness to illumination changes, and gains from larger training datasets. Neural network architecturesyield strong, generalizable mappings across users, hardware, and environments [102, 109, 111].
State-of-the-art algorithmic approaches underpin high-performance authentication by leveraging next-generation computing paradigms. GazeNet combines multi-scale convolutional features with attentionmechanisms for robust performance across users and conditions without explicit calibration. Ensemblelearning methods combine complementary gaze estimation algorithms for improved performance. Transferlearning deploys pre-trained models from large datasets, reducing training requirements while enabling rapidadaptation across users and environments. These approaches benefit scenarios with limited training data orcomputational resources [112, 113, 114]. Real-time and edge processing architectures emphasize compu-tational efficiency for interactive authentication through optimization techniques balancing performanceand resource limitations. System efficiency requires careful algorithmic tuning and resource allocation usingparallel processing and efficient data structures to ensure timely responses while maintaining accuracy andsecurity. Real-time computation is critical for applications requiring instantaneous feedback, continuousverification, or interactive system integration, as authentication delays negatively impact user experience[95, 115, 116, 117]. For architectural details of edge computing—including processing split, local featureextraction, and distributed protocols—see Section 3.4.3 (Edge Computing Architectures); here we focus onalgorithmic and real-time software considerations.

3.3 Cloud-Based Systems
Cloud-based gaze authentication systems utilize distributed computation and network connectivity forscalable authentication supporting numerous users and sophisticated processing. This service-orientedarchitecture provides on-demand authentication across platforms and geographies while decoupling dataacquisition from processing and storage. Cloud advantages include computational scalability, centralizedalgorithm management, uniform authentication policies, and access to computationally intensive machinelearning algorithms requiring large training datasets [95, 118].
The key advantage of cloud systems is their ability to provide robust authentication features for resource-constrained devices, while at the same time maintaining centralized control over security mechanisms,algorithm updates, and end users. This arrangement allows for efficient deployment of advanced authentica-tion techniques within a range of end-use applications, such as mobile devices, embedded systems, andweb applications, that generally do not have the capability to adopt complete local authentication processesbecause of their limited computational capabilities. Additionally, cloud structures are best suited to realizeeconomies of scale offered by large computational resources, enabling the realization of economically viableauthentication mechanisms. At the same time, they drive ongoing innovation through centralized algorithmreleasing, large-scale data analytics, and deployment of advanced machine learning methodologies takingadvantage of heterogeneous end-user populations and usage patterns. Nevertheless, cloud systems facesignificant challenges with respect to network latency, protecting privacy, maintaining data security, and theneed to maintain authentication processes during network outages or connectivity issues [118, 119].
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3.3.1 Remote Authentication Services
Remote authentication services provide centralized methods for gaze recognition-based authenticationthat can be accessed through various client systems that are networked together. This capability makes itpossible to build scalable authentication designs that can support very large user populations while main-taining consistent security policies and authentication techniques across various platforms and deploymentenvironments. These designs facilitate the application of combined authentication policies across multipleplatforms based on the use of strong server-side processing capabilities and the creation of sophisticateddistributed computing environments that can efficiently manage authentication requests from large numbersof concurrent users with minimal latency and maximum availability using sophisticated methods for loadbalancing, caching, and resource allocation. Paradigms for remote services provide significant advantages,such as centralized control of algorithms, a unified user experience across platforms, reduced processingloads on client-side systems, and the ability to implement large machine learning systems that requiresignificant processing capability and large training datasets [120].
Scalable cloud architectures utilize distributed computing resources to process authentication requests fromlarge populations of concurrent users, utilizing infrastructure management techniques like load balancing,auto-scaling, and distributed storage to maintain performance and availability despite variable demandconditions, while at the same time improving cost effectiveness and utilization of computation resources.Scalable cloud architectures are typically based on microservices architectures, which allow different com-ponents of the authentication system to scale independently based on patterns of demand, thus improvingresource utilization and system robustness through fault isolation and redundancy mechanisms. Moderncloud platforms provide us with tools for measuring system performance, managing resource allocation, andmaintaining high availability through geographic diversity and fault-tolerant automatic failover mechanismsthat maintain authentication service continuity even in the face of underlying infrastructure faults or mainte-nance interruptions [121]. Cloud-based vision and ML services can support scalable deployment; however,vendor-specific details are omitted to ensure neutrality and longevity. Focus should remain on architecturalconsiderations (latency, privacy, model update cadence, and availability) that are provider-agnostic.

3.3.2 Privacy-Preserving Cloud Authentication
Privacy-preserving cloud authentication is a sophisticated architecture that utilizes advanced cryptogra-phy to strengthen cloud computing’s authentication mechanisms, safeguarding individuals’ privacy andtheir biometric information. Privacy-preserving cloud authentication is a suggested architecture aimedat addressing expanding fears over cloud-based environments’ security and confidentiality of biometricinformation through new technical mechanisms exploiting cloud computing benefits as well as ensuringeffective privacy guards. These frameworks address security and confidentiality risks for biometric datain cloud environments by employing advanced cryptographic mechanisms, secure computing frameworks,and privacy-preserving machine-learning methods, enabling sophisticated authentication while protectingsensitive data from unauthorized use, inference, or misuse. The architecture recognizes biometric dataas highly sensitive and therefore mandates rigorous protections, especially in cloud infrastructures wherethird-party providers process or store such information [122].
Homomorphic encryption enables computation on encrypted gaze data without decryption, allowing cloud-based authentication while preserving data confidentiality. Recent advances have made such schemesincreasingly practical for biometric workloads, and implementations now support detailed authenticationpipelines over ciphertext with acceptable efficiency and strong security guarantees. Secure multi-partycomputation allows multiple parties to jointly perform authentication computations without revealing theirprivate inputs, enabling federated authentication frameworks to access decentralized data while preservingprivacy; advanced cryptographic protocols ensure no participant gains the full dataset [123, 124].
Sophisticated privacy-preserving methods maintain user confidentiality while enabling advanced authentica-tion capabilities in cloud environments. Differential privacy injects carefully calibrated noise into observedquantities and authentication outputs to impede identification of individuals, offering formal, tunable privacyguarantees that preserve utility. Federated learning enables heterogeneous devices or organizations to collab-oratively train authentication models without transferring raw biometric data. This improves accuracy whilepreserving data locality by using distributed machine-learning techniques that aggregate knowledge acrossheterogeneous sources without centralizing datasets. Collectively, these advances significantly strengthencloud authentication by leveraging large-scale computation and machine learning while addressing thesensitive privacy challenges inherent to storing biometric data in cloud infrastructure [118, 119].
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3.4 Embedded Systems
Embedded gaze authentication integrates biometric capabilities directly into consumer electronics andInternet of Things (IoT) devices, emphasizing resource efficiency and responsive user interfaces whileoperating within the constraints of embedded computing environments. These authentication approachesare challenged by the need to find a subtle balance among authentication effectiveness and the limitationsplaced by energy consumption, computing capability, and spatial constraints. This requires innovativeapproaches to engineering that are capable of delivering an acceptable degree of authentication whilemeeting the demanding requirements commonly found with embedded applications such as instantaneousresponsiveness, energy efficiency, thermal control, and cost effectiveness. The embedded computingparadigm provides critical applicability with respect to gaze-based authentication, given that it allowsbiometric security capabilities to be included with the broad range of networked and increasingly complexdevices that typify modern society [95].
The main issue related to embedded gaze authentication is the development of systems that providesignificant security benefits without compromising resource constraints. This requires implementing ad-vanced optimization techniques aimed at eliminating computational loads, decreasing energy utilization,and increasing memory efficiency, with satisfactory security and authentication process accuracy levelsachieved simultaneously. Generally, embedded systems are required to function independently with ex-tended lifespans without access to exterior services or support; hence, they need authentication schemesthat are not merely robust and reliable but are also capable of maintaining steady functionality across diverseenvironmental settings, different end-users, and different application arenas. Additionally, such schemesshould have the resilience required to support changing situations and growing security needs. The effective-ness of embedded gaze authentication depends upon developing efficient algorithms, optimizing hardwaresettings, and developing smart systems for authentication capabilities that are technically competent andcommercially viable under the limitations of the embedded application framework [78].
3.4.1 Mobile Device Integration
The authentication of portable devices is an emergent research area that integrates gaze authentication acrossmobile phones, tablet computers, and wearable technology to enable ubiquitous authentication systemsthat provide secure interactions over a vast range of personal computing devices in use by individuals in theirdaily lives. Such applications are critical in managing challenges related to diverse hardware compatibility,diverse application contexts, and user mobility, necessitating the creation of flexible algorithmic approachesand system architectures that can maintain authentication effectiveness across varying device classes, screensizes, sensor configurations, and application contexts, as well as ease the changing conditions inherent toportable computing environments. The mobile integration framework recognizes that users interact with avariety of devices during their day-to-day activities, thus requiring authentication approaches that can offerconsistent security experiences while respecting the inherent capabilities and limitations of each individualdevice [22, 125].
The inclusion of eye tracking in smartphones utilizes front cameras in conjunction with computationalalgorithms to enable gaze-based authentication without the necessity of special hardware. This technologyleverages the advanced camera technology and powerful processors built into modern smartphones, thusproviding authentication capabilities previously unique to specialized eye-tracking hardware. The TrueDepthcamera system built into the Apple iPhone, and similar technologies, allows for basic attention detectionand gaze direction evaluation in consumer devices by applying depth sensing, infrared illumination, andmachine learning algorithms that can deliver a sufficient level of accuracy for the purpose of authentication,while maintaining the visual quality and user experience expectations of consumer products. This is incontrast to gaze authentication on Android devices, which utilizes the rich hardware ecosystem typical ofAndroid devices to enable flexible authentication solutions. These systems utilize the Android Camera2Application Programming Interface (API) and machine learning libraries to enable developers to create gazeauthentication applications that can support diverse hardware configurations, display screen resolutions,and processing power in the wide range of Android devices offered in the market [126].
Sophisticated mobile deployments demonstrate the viability of augmenting authentication functionalitywithin the limits of consumer-grade devices. Here, authentication technologies based on tablet platformstake advantage of the increased screen size and improved processing capacity to enable advanced gazeauthentication functionality, accommodating dynamic, adaptive visual patterns and extended session lengthswhile maintaining user comfort using better user interface and interaction design. Additionally, the presenceof wearable technologies extends the application base of gaze authentication to smartwatches, fitnessbands, and other wearables, requiring systems to withstand limitations associated with power availabilityand processing resources, while all along maintaining strong security through highly optimized computational
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approaches, judicious hardware utilization, and intelligent power management mechanisms that providefor extended periods of authentication activity. These developments in mobile and wearable technologiesrepresent the cutting edge of embedded gaze authentication, defining the viability of integrating sophisticatedbiometric security features into portable devices that have become ubiquitous in modern society [66, 78].
3.4.2 IoT and Smart Environment Applications
Internet of Things applications extend gaze-based authentication to environmental control systems, smarthome devices, and ambient computing platforms, creating pervasive authentication capabilities that canprovide seamless security across the interconnected ecosystem of smart devices that increasingly populatemodern living and working environments. These systems often operate in challenging environmental condi-tions and must demonstrate robust performance across diverse user populations, requiring authenticationalgorithms that can maintain reliable operation despite variations in lighting conditions, environmental noise,user positioning, and the diverse range of users who may interact with IoT devices including individualswith varying levels of technology familiarity, different physical capabilities, and diverse cultural backgrounds.The IoT paradigm imposes distinct requirements on gaze-based authentication: autonomous operation,low-maintenance lifecycles, and seamless integration with existing smart-environment infrastructure, allwhile delivering meaningful security benefits [127]. In smart homes, gaze-based authentication can governlighting, climate, entertainment, and security subsystems, enabling user identification and personalizedexperiences while restricting unauthorized access. These deployments favor hands-free interaction thataccommodates diverse levels of technical expertise through natural modalities. In automotive settings, gazebiometrics support vehicle access control, driver identification, and personalization of settings, and mustfunction under harsh conditions—varying illumination, vibration, and temperature extremes—while providingrapid authentication without compromising safety [128, 129].
Specific IoT deployments showcase the versatility of gaze-based authentication across domains. In industrialIoT, gaze authentication supports equipment access control and safety interlocks, meeting stringent reliabilityrequirements while operating amid extreme temperatures, vibration, dust, and electromagnetic interference.In healthcare settings, gaze biometrics enable secure device control and patient identification, requiring highreliability and adherence to regulatory frameworks to ensure protected access to critical systems. Theseexamples illustrate the modality’s applicability across sectors [130, 131].
3.4.3 Edge Computing Architectures
Edge computing paradigms distribute computational operations over local devices and network infrastructure,boosting equilibrium of computational requirements, latency, and privacy of data. This paradigm supportshybrid approaches that utilize local processing and cloud abilities simultaneously without experiencingseparate handicaps, yet maintains local ownership of data. Edge computing architecture supports gaze-based authentication by embedding complex authentication protocols in resource-limited environments,providing for efficacy, privacy, and commercial viability [132]. Local feature extraction performs initial gazeanalysis locally, which reduces bandwidth usage and enforces privacy protections by means of higher-levelalgorithms that extricate compact, privacy-respecting feature sets at the expense of retaining discriminativeinformation pertinent to effective authentication. Hierarchical processing models utilize different levels ofcomputing resources, from local microcontroller units to cloud infrastructure, and as such, enable flexiblecomputing architecture that dynamically relocates processing resources in concert with available capacitiesand security requirements, providing a balancing act between efficacy, privacy, and cost considerations[133].
Advanced edge computing implementations perform distributed authentication that adapts in real time toheterogeneous resource conditions and application-specific requirements using sophisticated monitoringand optimization mechanisms. These approaches sustain authentication efficiency while optimizing resourceutilization across distributed systems. Distributed authentication patterns enable collaboration amongedge devices during critical phases, ensuring end-to-end data integrity. Consensus mechanisms furtherimprove authentication outcomes through collaborative computation while preserving privacy and reducingper-device computational load. Collectively, these capabilities demonstrate edge computing’s ability todeliver robust authentication across diverse deployment environments and resource constraints [134, 135].
4 Security Evaluation and Performance Analysis
This section discusses the evaluation methods classified under the third dimension in our framework,comprising measures of accuracy, techniques for countering spoofing attempts, and usability measures thatare essential in the evaluation of systems. Evaluating gaze-based authentication requires methodologicalframeworks assessing effectiveness across deployment environments, threat models, and user specifications.
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Current biometric testing standards need adaptation for gaze-specific aspects including temporal behavior,cognitive and environmental influences, and specific vulnerabilities. Evaluation frameworks must addressperformance domain interactions, recognizing that improvements in one aspect may negatively impactothers, necessitating careful trade-off analysis. Developing standardized testing protocols and metricsremains a key research direction for meaningful method comparisons [136].
Standards alignment: We follow the principles in ISO/IEC 19795-1 for biometric performance testingand reporting and adopt ISO/IEC 30107:2023 presentation attack terminology (bona fide presentation vspresentation attack; attack instruments such as replay, synthetic/generative, and mechanical) as well asrecent minimal reporting guidance for eye-tracking research [14, 137, 138]. Where relevant, we specifyprotocol attributes (dataset, subjects/sessions, impostor type, PAD on/off) to ensure comparability andtraceability across studies. Table 4 systematically organizes the key evaluation metrics across three criti-cal dimensions: accuracy performance, spoofing resistance capabilities, and usability assessment factors,providing a structured framework for comprehensive system evaluation.

Table 4. Performance Metrics and Evaluation Framework for Gaze-Based Authentication
Metric Cate-
gory

Specific Metrics Literature Range Evaluation Method Security
Implications

AccuracyMetrics Equal Error Rate (EER),False Acceptance Rate (FAR),False Rejection Rate (FRR)
Varies by study,System-dependent,Context-dependent

Cross-validation,Hold-out testing,Impostor testing
Primary performance indicator,Security risk assessment,Usability impact

Spoofing Re-sistance Presentation AttackDetection (PAD),Liveness Detection Rate,Robustness Score

Performance variessignificantly by attack type,Depends on detection methodand sophistication

Synthetic attack testing,Video replay attacks,Environmental variations
Anti-spoofing capabilitydepends on stimulus design,Sensitive to promptunpredictability

Usability As-sessment Enrollment Time,Authentication Speed,User Acceptance Rate
Varies by stimuluscomplexity,Limited empirical data

User studies,Response time measurement,Subjective evaluation
Adoption barrier,User experience,Practical deployment

4.1 Accuracy and Performance Measurement Metrics
Accuracy metrics underpin discrimination performance assessment but should be interpreted with gaze-specific caveats (temporal dynamics, environmental sensitivity, and calibration effects). When reportingEER/FAR/FRR or DET/ROC curves, specify dataset (subjects/sessions), hardware class, session protocol,and whether results reflect zero-effort impostors, informed impostors, or presentation attacks. Attributenumeric ranges to specific studies; avoid global ranges without protocol context. Comprehensive evaluationrequires systematic documentation of key parameters to ensure reproducibility and meaningful comparisonacross studies. Essential documentation includes methodology and dataset characteristics such as datasetdesignation, number of participants, session frequency, and enrollment versus testing division protocols.Impostor model specification must clearly indicate whether results reflect zero-effort, informed/targeted, orpresentation attack scenarios, including the type of attack instrument employed. Presentation attack detec-tion and liveness detection status should be documented, specifying whether systems are active or inactiveand providing details of challenge-response mechanisms where applicable. Performance reporting shouldinclude comprehensive metrics and curves such as EER, FAR/FRR at stated thresholds, DET/ROC curveswith operating points, and identification metrics including rank-1 accuracy and CMC curves where relevant.Hardware class specifications must detail whether systems employ research-grade infrared equipment, com-modity RGB cameras, head-mounted displays, or mobile/embedded devices, along with sampling rates andillumination characteristics. Calibration procedures require documentation of periodicity and methodology,including automated calibration and drift management approaches. Environmental and user conditionssignificantly impact performance and should include illumination spectrum, geographical environment, userexhaustion levels, and task environment characteristics.
4.1.1 False Acceptance and Rejection Rates
The False Acceptance Rate (FAR) refers to the probability that an authentication system will falsely acceptan impostor as an authorized user, thus representing a key security metric to evaluate the effectiveness ofgaze-based authentication systems against unauthorized access attempts. In order to determine the FAR ofgaze-based systems, it is necessary to investigate different attack approaches and types of impostors withthe goal of providing a thorough security evaluation while recognizing that individual impostor classificationsrepresent different threats that require different countermeasures. The estimation of the FAR in gaze-basedsystems is highly challenging due to the complexity of the analysis of gaze patterns, the possibility ofsimilarities within different users, and the impact of environmental circumstances and physical conditionson the detection of unique gaze-related features [139]. Zero-effort impostor attacks represent the baseline
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threat model where impostors attempt authentication without specific knowledge of legitimate user gazepatterns, essentially relying on chance or natural similarities in gaze behavior to achieve unauthorized access.Studies have reported low FAR under zero-effort conditions in controlled settings [140, 141], indicatingthe inherent discriminative power of gaze patterns for user identification. Random impostor evaluationexamines performance when impostors are randomly selected from the user population, providing insightsinto the natural discrimination capability of gaze features across diverse user populations and revealing howsystems perform across the spectrum of human gaze variation.
Informed impostor attacks are categorized by attackers’ possessing a degree of awareness concerninglegitimate users’ gaze patterns, thus being higher-end threat models employing known gaze behaviors,statistical behavioral patterns, or social engineering methods to raise the likelihood of attack successes.Informed impostor attacks present a heightened challenge for gaze-based authentication because adversariescan mimic observed gaze behaviors or exploit system-specific weaknesses to increase their success rate.Analyzing systems under informed-adversary models reveals vulnerability surfaces and underscores the needfor additional defenses—liveness detection, challenge-response protocols, or multimodal authentication—toharden resistance against skilled attackers familiar with legitimate users’ behavioral patterns [142]. TheFalse Rejection Rate (FRR) is the probability that a system denies access to a legitimate user and is a keyusability metric that directly impacts user satisfaction and real-world adoption. Evaluating FRR in terms ofgaze-based mechanisms requires accounting for inherent users’ gaze behavior variability, which may resultfrom fatigue, environmental factors, and temporal variations in behavior. Additionally, it is fundamentalto consider that gaze behavior is subject to a variety of systematic and stochastic variations affectingauthentication effectiveness, even in legitimate users. Precise FRR estimation of gaze-based authenticationmechanisms requires a thorough insight into variability sources of intra-user behavior, as well as developingeffective mechanisms able to compensate for intrinsic variations in gaze behavior while ensuring safetyagainst unauthorized attack attempts [78].
Intra-session variability analysis examines FRR within a single authentication session, quantifying short-termeffects such as attention shifts, eye fatigue, and environmental distractions that can cause deviations fromthe enrolled gaze profile. Well-calibrated systems can achieve low FRR within a session, though performancemay degrade over longer sessions due to fatigue, attention drift, or changing environmental conditions.Inter-session stability evaluation measures FRR across sessions separated by hours, days, or weeks, assessingtemporal stability of gaze patterns and the system’s ability to adapt to natural behavioral changes overtime (e.g., learning effects, variations in visual acuity, or cognitive state) [143, 144]. Cross-environmentrobustness testing evaluates FRR when authentication occurs under different environmental conditions(lighting, noise, location), providing insight into consistency under real-world deployment scenarios. Effectivegaze authentication should maintain acceptable FRR across such conditions by compensating for factorslike ambient-light variation that may degrade eye-tracking quality, changes in user position that affectgaze-estimation accuracy, and environmental distractions that alter gaze behavior [145].
4.1.2 Equal Error Rate and Operating Point Analysis
The Equal Error Rate (EER) summarizes the trade-off between false rejection and false acceptance byidentifying the operating point where FRR equals FAR. It provides a convenient basis for comparing methodsand systems; however, comprehensive evaluation requires analyzing performance across the full operatingrange because applications differ in their preferred usability–security balance. EER is popular for its clarity andease of interpretation, but it may not capture nuanced behavior under specific deployment conditions [146].State-of-the-art gaze-authentication systems exhibit varied performance depending on implementationdetails, feature-extraction pipelines, and experimental protocols. Reported results vary widely across studiesdue to differences in approaches, hardware configurations, and evaluation setups. Desktop platforms—oftenoperating under controlled conditions with higher-quality sensors—tend to outperform mobile and webcam-based deployments, where hardware and environmental constraints introduce additional error. Theseobservations illustrate the trade-offs between accuracy and deployment convenience; outcomes alsodepend strongly on testing protocols, dataset quality, selected gaze features, and classifier design [147].
Higher-order performance analyses provide a richer, dynamic characterization of system behavior beyonda single summary metric. Detection Error Tradeoff (DET) curves visualize performance across operatingpoints, revealing how FRR and FAR interact and exposing curve topology, regions of inflection or plateau,and behavior under extreme conditions. Receiver Operating Characteristic (ROC) curves offer a comple-mentary view focused on the trade-off between true positives and false positives, particularly useful whensecurity requirements are asymmetric. Cost-sensitive analysis incorporates application-specific costs offalse acceptance and false rejection to select operating points tailored to deployment needs; however, theoptimal balance between usability and security depends on factors such as required security level, usertolerance for failure, and the consequences of unauthorized access [148, 149, 150].
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4.1.3 Identification Accuracy and Scalability
Accuracy measures quantify the effectiveness of gaze-based recognition in large-population settings. Beyondbinary verification, identification is a multi-class task that demands separation among hundreds of enrolledidentities rather than a single claimed identity. These metrics are especially relevant when identification—notjust verification—is required, such as in adaptive user interfaces, large-scale access control, or free-viewingsurveillance scenarios. Rank-1 identification accuracy measures the probability that the true identity appearsat the top rank, reflecting how discriminable gaze cues are across users. Observed Rank-1 varies withpopulation size, task design, and sensor quality; performance typically declines as the gallery grows due toincreased similarity in gaze behavior. Cumulative Match Characteristic (CMC) curves visualize identificationeffectiveness as a function of rank, enabling leverage of additional candidates and providing insights intoerror distribution [151, 152].
Scalability analysis examines how identification accuracy degrades as the enrolled population grows. Thisperspective clarifies operational limits of gaze-based identification and helps determine population sizes ap-propriate for different application scenarios. A detailed understanding of scalabilityincluding its constraintsisessential for large deployments and informs architectural choices across feature extraction, classifier design,and system configuration to maintain efficiency as user counts increase. The distinction between closed-setand open-set evaluations is critical: in closed-set tests all subjects are enrolled, whereas open-set testsinclude unknown individuals who are neither enrolled nor recognized; the latter more closely reflects real de-ployments with attempted access by unenrolled users. Open-set protocols necessitate auxiliary mechanismsfor detecting and rejecting unknowns, increasing system burden but enabling more realistic assessment ofperformance [153, 154]. Given these multifaceted evaluation challenges, a comprehensive framework isneeded to capture interdependencies among accuracy metrics, security considerations, and usability factors(see Figure 2). The framework highlights inherent trade-offs and how these dimensions jointly determineoverall system performance, guiding the selection of operating points for specific application requirements.
4.2 Spoofing Resistance and Anti-Spoofing Techniques
The ability to counter spoofing is a critical security requirement of gaze-based authentication approaches,with attackers trying to escape authentication mechanisms through the utilization of presentation attacktactics and the creation of artificial data that exploit the inherent flaws related to measuring and inspectinggaze activity. The assessment of spoof resistance requires consideration of different attack modalitiesalongside the effectiveness of countermeasures, while understanding that the attack profile of gaze-basedauthentication remains constantly fluid, with attackers developing next-generation tactics designed tocreate extremely realistic artificial gaze patterns or control the authentication processes. Spoof resistanceshould be based on current attack approaches, along with potential future attack vectors, so that evennext-generation machine learning approaches are capable of creating highly realistic artificial gaze datathat is difficult to distinguish from real patterns [155]. The challenge of developing resistance to spoofingby gaze-based authentication is exacerbated by the embryonic status of the technology, compoundedby limited understanding of the diverse attack vectors that would be available to attackers. Older, moremature biometric modalities, like face and fingerprint recognition, have long been the subject of practicaldeployment, whichmay shed light on previously overlooked vulnerabilities or attack approaches. Additionally,the complexities of human gaze, along with advanced algorithms necessary to support gaze analysis, offernumerous possible vulnerabilities that malicious agents may exploit, ranging from sensor-level vulnerabilitiesthat construct basic gaze data to algorithm-level attacks that seize on weaknesses of pattern recognitionand classification approaches [155].
4.2.1 Presentation Attack Detection
Presentation attacks are referred to as submitting fabricated or manipulated gaze data to authenticationsystems in a bid to gain unauthorized entry. This kind of action is a serious and viable danger to gazeauthentication systems, at least by virtue of how simple it is for attackers to submit spoofed gaze data.According to definitions issued in ISO/IEC 30107:2023, there is a necessity to demarcate true presentationfrom presentation attack, and different modalities of attack (such as replay of a video, synthesis or generativeattack, and mechanical devices). Presentation attack detection entails constructing analytical procedurescapable of clearly distinguishing attack presentations from legitimate presentations, and concurrently ensur-ing sufficient authentication functionality for legitimate users [156]. Replay attacks are a primary challengefor gaze-based authentication: an adversary presents pre-recorded gaze patterns from an authorized user(e.g., on a display placed in front of the eye tracker) to spoof the point of regard. Effective countermeasuresmust discriminate in-vivo gaze from replays by exploiting cues that are difficult to synthesize, including mi-crosaccades and other fine oculomotor dynamics, environment-dependent corneal reflections, and temporalartifacts indicative of artificial sources. Liveness detection assesses whether the captured signal originates
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Figure 2. Performance Metrics and Security Trade-offs in Gaze-Based Authentication

from a live human by analyzing features such as the pupillary light reflex, natural micro-movements, andother physiological or behavioral signatures that are hard to fake. These approaches emphasize physiologicalindicators that separate genuine eyes from synthetic presentations [157, 158].
Sophisticated presentation attack detection methodologies employ advanced analysis techniques to detectsubtle cues indicating the presence of fake gaze data. Challenge-response protocols require users to followprecise gaze paths or respond to dynamic stimuli, thus making replay attack approaches impossible sincethese are based on the need for real-time interaction instead of presenting static images. These methodscould include arbitrary visual stimuli, interactive calibration techniques, or tasks that call for instant gazeresponses, which cannot be pre-recorded or anticipated by possible attackers. Temporal consistency analysisexamines the temporal attributes of gaze patterns with the aim of revealing spoofing attack evidence, notingthat natural gaze behavior possesses unique temporal characteristics, such as inherent variability, correlationstructures, and dynamic aspects that are difficult for replay attack tactics or synthetic generation algorithmsto mimic [10, 137, 159].
4.2.2 Synthetic Data Detection
The developments in machine learning techniques dedicated to creating artificial data have posed newchallenges before gaze authenticationmechanisms. Modern algorithms have the potential of creating artificialgaze patterns that are significantly similar to genuine ones and consequently, have the potential of confusingauthentication mechanisms by generating data that are reflective of the statistical and temporal profileof natural human gaze activity. This emerging threat shifts the attack landscape for gaze authentication:conventional presentation-attack detection may fail to flag carefully engineered synthetic gaze signalsproduced by advanced machine-learning models [155]. Generative Adversarial Networks (GANs) utilize state-of-the-art deep learning methods to synthesize artificial gaze patterns closely mimicking those displayed
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by real users. This generation is made possible through the use of adversarial training processes thatsuccessfully capture the complex statistical and temporal properties underlying human gaze behavior. Thedetection of GAN-generated gaze data requires the use of innovative analysis techniques able to identifyfaint artifacts present within these artificial patterns. These artifacts can include statistical anomalies,temporal discrepancies, or features discernible within the frequency space, which can indicate the syntheticorigin of the generated data. The aim of statistical anomaly detection includes inspecting the statisticalproperties of gaze patterns to identify departures from normal human behavior. It recognizes that syntheticgaze data might have statistical properties different from those displayed by authentic human patterns,identifiable through methods such as modified correlation structures, anomalous distribution properties,or the lack of higher-order statistical dependences characteristic of legitimate human gaze movements[159, 160, 161].
Sophisticated detection approaches of synthetic data employ several complementary analysis techniquesto promote the reliability of the detection process. Among them, frequency domain analysis exploitsthe spectral properties of gaze signals to detect synthetic data, since artificial construction mechanismstend to embed specific artifacts in the frequency domain that are not present in natural gaze patterns.Such artifacts can appear as anomalous spectral peaks, missing frequency components, or different powerdistribution profiles. Additionally, multimodal verification fuses gaze analysis with other biometric modalitiesto strengthen spoofing resistance. Cross-modal consistency checks leverage correlations between gaze andcomplementary physiological or behavioral traits, forcing attackers to generate coherent synthetic signalsacross modalities simultaneously. This requirement raises the attack complexity substantially and reducesthe likelihood of successful spoofing [162].
4.2.3 Robustness Against Advanced Attacks
Sophisticated attackers with deep knowledge of authenticationmechanisms and access to bespoke tools posethemost significant threats to gaze-based deployments in challenging environments. Careful analysis of thesethreats is essential to pinpoint vulnerabilities and to design countermeasures that withstand well-planned,well-resourced attacks. Assessing resilience requires studying subtle and emerging attack profiles drivenby rapid technological advances. Adversarial machine-learning attacks manipulate gaze signals to inducemisclassification while remaining imperceptible to humans, exploiting algorithmic blind spots with carefullycrafted perturbations. These understated threats leverage insight into the specific models used, enablinggaze patterns tailored to algorithmic weaknesses. Physical device spoofing includes mechanically replicatingeye motion or presenting artificial eye imagery via robotic eye simulators, high-definition displays, oractuators that reproduce eye dynamics. Effective defenses against physical spoofing demand holistic securitymeasures that evaluate hard-to-simulate properties—subtle movement signatures, biological processes, andenvironment-dependent interactions [11, 85, 163].
Social engineering attacks exploit observation or interaction to extract a user’s gaze behavior, which is thenreplicated via behavioral mimicry or technological aids. Effective countermeasures must account for thevisibility and replicability of gaze cues—some aspects can be gleaned through casual surveillance—since suchleakage can seed later spoofing attempts. Insider threats occur when adversaries hold legitimate access tosystems or data; with knowledge of internals, templates, or operating procedures, insiders can circumventcontrols and thus pose a particularly challenging risk. Mitigations require robust template protectionand tightly scoped access controls that curb privileged misuse while preserving necessary administrativefunctionality [10, 87]. To synthesize these concerns, Table 5 maps major attack classes to representativevectors, primary defenses, and key limitations.
4.3 Usability Assessment and User Experience Evaluation
Usability assessment addresses practical aspects of deployment and user acceptance, recognizing thatsecurity must be balanced with user experience for successful real-world operation across diverse popula-tions and contexts. Evaluation spans subjective satisfaction, objective performance metrics, accessibility,and long-term adoption. Gaze-based authentication introduces specific challenges due to the interactionparadigm, potential learning effects, and the need to accommodate users with varying technology familiarityand distinct visual/motor characteristics [97].
4.3.1 User Experience and Acceptance Factors
User experience studies examine phenomenological aspects of gaze authentication, including user satis-faction, perceived security, usability, and intent to adopt such systems in diverse settings. This evaluationprovides valuable understanding regarding the variables determining the end-users’ acceptance of andefficient usage of gaze authentication systems during practical application contexts. Understanding end-users’ perspective is critical to the effective integration of such systems and long-term usage, with even
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Table 5. Attack Classification and Defense Strategies for Gaze-Based Authentication
Attack Class Description Representative Vectors Primary Defenses Notes/Limitations

Video replay (presenta-tion) Replayed eye videos oron-screen animations Screen/display spoofingnear sensor Challenge–responsetasks, liveness viapupillary light reflex,blink/microsaccadecues

Needs unpredictableprompts, may raiseusability costs

Synthetic/generative(GAN/VAE) AI-generated gazesequences resemblinguser
Data-driven synthesismatched to template Temporal/frequencyanomaly detection,multi-modal cross-check, PAD ensembles

Arms race with genera-tive models, require up-to-date detectors
Mechanical simulation Robotic/optical rigs em-ulate eye kinematics Robotic eye, motorizedrigs, high-res displays Oculomotor-plantliveness (OPC), 3Dconsistency, corneal-reflection physicschecks

Specialized but high-threat for high-valuetargets

Adversarial ML Crafted inputs to foolclassifiers Digital perturbations,surrogate-model at-tacks
Adversarial training, in-put sanitization, modelensembling

May degrade accuracy,difficult to comprehen-sively defend
Template compromise Theft/modification ofstored templates Insider breach, insecurestorage Cancelable templates,encryption at rest/intransit, HomomorphicEncryption (HE)/SecureMulti-Party Computa-tion (SMPC), Differen-tial Privacy (DP)

Requires careful keymanagement, revocabil-ity constraints

Social engineer-ing/observation Observing and mimick-ing gaze behavior Shoulder surfing,surveillance Challenge–response,multi-factor fusion,behavioral variancechecks

Low-tech but partiallyeffective without CR

the most advanced authentication methodology suffering failure if it does not meet end-users’ demands orcomprehensively address privacy, usability, and social acceptability concerns [164]. The survey of perceivedsecurity examines user confidence in gaze-based authentication technologies compared with standardauthentication processes. This survey contends that users are inclined to perceive gaze-based authenticationas safer than password authentication, foremost based upon the great difficulty involved with duplicatingor impersonating gaze movements. However, concerns about privacy and monitoring are often expressedby users, which could influence their receptiveness to adopting such technology. Real-world studies showthat users’ perceptions of security are shaped by multiple factors, including their understanding of thetechnology, prior experience with biometric authentication, and awareness of potential vulnerabilities andattack surfaces. Usability findings emphasize simplicity and consistency in gaze-based authentication: usersgenerally prefer mechanisms that require fewer explicit actions and integrate seamlessly into daily routineswith minimal workflow disruption or behavior change. In this respect, gaze-based methods offer inherentadvantages by enabling passive, continuous authentication during routine computer use, without explicituser effort [165].
Privacy concerns strongly influence willingness to adopt gaze-based recognition. Users worry that richgaze data could reveal sensitive attributes beyond identity—cognitive states, health indicators, interests, orbehavioral patterns—information they may wish to keep private. Addressing these concerns requires fairprivacy policies and technical safeguards that harden recognition pipelines. Recommended measures includedata minimization, secure storage and transmission, and user-centric controls over biometric information.Social acceptability also shapes adoption: the visibility of eye-tracking hardware, calibration demands,and potential stigma around biometrics can deter use, particularly in public or professional settings [166,167]. Trust is built when systems demonstrate consistent performance, transparency, and robust security;cultivating trust depends on clear communication and dependable operation [168].
4.3.2 Authentication Time and Efficiency
Authentication time is a key usability factor: users expect prompt results that do not disrupt ongoingtasks. Requirements vary by application context and user expectations. Gaze-based systems must balancesufficient data collection for security with responsiveness, creating an inherent accuracy–usability trade-offthat requires careful tuning across deployments. Although the fleeting nature of gaze enables continuousauthentication, observation windows must still be long enough to reliably discriminate among users [169].Data-collection duration analysis estimates the time needed to acquire enough gaze evidence for dependabledecisions; required durations depend on system complexity, environmental conditions, and individual
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variability. Processing-latency evaluation measures the time for feature extraction, matching, and decisionmaking. Real-time applications must keep latency low enough for interactive interfaces while allocatingcomputation to preserve accuracy. Achieving this balance calls for efficient algorithms, parallel or pipelinedprocessing, and, where appropriate, specialized hardware [9, 170].
Overall authentication time spans both data acquisition and processing, providing an end-to-end measure ofresponsiveness from initiation to decision. Timing requirements vary by application, and user satisfactionhinges on balancing security confidence against response time. In continuous authentication, effectivenessdepends on computational overhead and attentional cost: systems must preserve identity assurance whileminimizing user distraction and resource consumption, which calls for algorithms that maintain authenticationstate with low load [91, 171].
4.3.3 Calibration Requirements and System Setup
Calibration procedures form an underlying factor of the effectiveness of gaze-based authentication systems.Strict or demanding calibration requirements could significantly impact user acceptance and system usability,potentially creating barriers that outweigh the security benefits of gaze-based authentication. There isa need for effective systems that reduce calibration requirements without compromising authenticationaccuracy. Such a need highlights the imperative of creating new methodologies that can provide reliablegaze measurement without subjecting end-users to the need for adequate technical knowledge or thewillingness to undergo complex procedures [172, 173, 174]. This initial calibration difficulty assessmentconsiders the time, effort, and skill invested in the initial installation of a system. It recognizes that simplecalibration procedures, requiring minimal end-user guidance and little technical expertise, are necessaryto promote widespread adoption across various end-users with differing technological capabilities. Thisconsideration of calibration requirement standards examines the frequency with which end-users mustperform repeated calibration processes to maintain authentication integrity. Systems that require frequentrecalibration are met with resistance from end-users and practical impediments in field deployment thatcan undermine their potential in real-world applications, since users expect systems to be reliable withoutneeding to be constantly maintained or adapted [175, 176].
Automatic calibration methods strive to minimize explicit calibration dependency by utilizing adaptive ap-proaches that derive knowledge of user attributes during typical system usage. This innovation marks asignificant advancement, with the potential of boosting usability while maintaining authentication effective-ness through smart manipulation of characteristic variables and variable environmental parameters. Theseapproaches harness machine learning mechanisms that allow the dynamic tuning of calibration parametersbased on user experiences and feedbacks of system responses, thus allowing systems themselves to automat-ically compensate for changes of user attributes or conditions of context without requiring explicit processesof recalibration. Cross-session calibration stability determines the effectiveness of calibration parameterstransferability across different usage sessions and environmental settings, with effective calibration reducingthe requirement of frequent setup processes and boosting consistent authentication performance acrossdifferent usage patterns and time intervals [99, 177].
4.3.4 Environmental Adaptability and Robustness
Environmental robustness evaluates the performance of systems under a wide range of conditions users arelikely to face in real-world uses. It recognizes that authentication processes need to function well in thevaried conditions typically present in normal use environments as opposed to the controlled conditions oflab tests. For authentication systems to be effective, it is critical that they provide consistent performancedespite the many variables inherent in real-world environments, such as varying light, ambient noise, userlocations, and environmental factors that could affect the accuracy of visual judgments and user behavior[178]. Lighting robustness tests a system’s performance under different lighting conditions, including natural,artificial, and low-light environments. This testing is critical because it ensures that gaze authenticationsystems maintain their effectiveness under lighting conditions commonly found in real-world applications,eliminating the need for adjustments according to the environment or user behavioral patterns. Backgroundnoise and distractions testing examines the system’s resilience to visual or auditory disruption that mightaffect users’ gaze responses. Ideal systems should maintain authentication accuracy even in conditionswhere users find themselves distracted or subjected to concurrent demands for their attention that drawtheir attention away from the authentication task. System functionality testing in a multi-user environmenttests its performance with multiple users, considering potential interference from others and the system’scapacity to correctly identify the intended user while avoiding the authentication of nearby users who mightbe in contact with the system [89, 179, 180].
Device mobility and positioning flexibility evaluate system tolerance for variations in user positioning, deviceorientation, and movement during authentication, recognizing that mobile authentication systems must
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accommodate natural variations in device usage patterns including handheld operation, desktop usage,and mobile scenarios where users may not maintain consistent positioning relative to eye-tracking sensors.These adaptability requirements present significant challenges for gaze-based authentication systems, asenvironmental variations can affect both the quality of gaze measurements and the consistency of user gazepatterns, requiring sophisticated algorithms that can maintain authentication performance while adapting tochanging conditions and usage contexts [181].
4.3.5 Accessibility and Inclusive Design
Issues of accessibility extend to the ability of gaze authentication schemes to support end-users withdifferent visual capabilities, motor capabilities, and levels of technological expertise. This highlights theunderlying maxim that authentication schemes should allow equitable access to security technology byall end-users across the broad range of human diversity. Inclusive design principles require authenticationschemes to allow equitable access by large end-user bases, since the deprivation of even one particularend-user base constitutes not just an ethical challenge but also a practical constraint, negatively impactingmarket penetration and societal impact of gaze authentication schemes.
The analysis of visual impairment accommodations addresses the effectiveness of systems designed forusers suffering from varied forms and severities of visual impairment. It is recognized that while gaze-basedauthentication essentially requires functional vision, these systems should be adapted to enable individualswith corrected vision, partial visual impairment, or specific visual conditions like astigmatism, color blindness,or age-related modifications in vision that could affect the accuracy or reliability of gaze measurements.Motor disability requirements address the needs of individuals suffering from motor impairments thatcould hinder head movement, eye motion regulation, or device interactions. This scenario calls for thecreation of adaptive systems that can adapt to the inherent variations in motor control capabilities whilemaintaining the accuracy and security of authentication. Age-related variations in performance explainhow accuracy and usability in authentication differ among age groups and note that aging could affectvarious aspects of visual and motor capability that could render gaze authentication less effective. Theseinclude modifications in visual acuity, eye movement dynamics, attentional control, and technology familiarity[32, 68]. Cultural and linguistic factors can influence gaze behavior—for example, reading direction, scriptcharacteristics, or culturally shaped viewing habits—so systems must deliver consistent performance acrossgroups to avoid bias or degraded effectiveness. Differences in technological sophistication also matter:users with limited experience may find setup and interaction challenging. Authentication workflows shouldtherefore provide clear guidance and assistance while avoiding digital barriers that exclude less-experiencedusers. Given the relative newness of gaze-based authentication, accessibility deserves particular emphasis;unconventional usage patterns and diverse needs may require inclusive design accommodations [182, 183].Table 8 summarizes the principal usability and configuration considerations, outlining typical performanceindicators, key influencing factors, and the associated design implications.

Table 6. Usability and Setup Summary for Gaze-Based Authentication
Factor Typical Range/Observation Primary Drivers Design Implications

Enrollment time Variable(study-dependent) Stimuli length,session protocol,calibration
Minimize via efficient stimuliand implicit calibration

Authentication speed Variable dependingon complexity Feature richness,processing latency Balance accuracy vs. latency,precompute where possible
Calibration frequency Low–medium(desired) Drift, device changes,lighting Use drift detection andauto-calibration to reduce burden
Continuous auth overhead Low–moderate Sampling rate,model complexity Duty-cycling, adaptive sampling,on-device inference
User acceptance Variable,limited field studies Perceived privacy,friction, reliability Transparent privacy, clear feedback,low failure costs
Accessibility Varies Visual conditions,motor control, age Inclusive design,alternative modes/fallbacks

4.4 Datasets and Benchmarks for Gaze-Based Authentication
The development and evaluation of gaze-authentication schemes largely rely on the availability of high-qualitydatasets that contain diverse patterns of gaze from diverse users, conditions, and settings. Standard datasetsallow shared research, fair comparisons across diverse approaches of methodology, and consequentlyencourage the development of robust machine learning models that can be widely generalized across diverseapplication settings. The quality of available datasets largely dictates the research questions that are enabled
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and the validity of experimental results, making the choice of datasets a critical factor behind the design ofauthentication schemes.
Available datasets for gaze-based authentication vary widely in scope, scale, and purpose, aligning withdiverse research goals and deployment scenarios. Some are collected in controlled laboratories withhigh-precision eye trackers to support fine-grained physiological analyses; others capture more naturalisticbehavior closer to in-the-wild conditions. Temporal coverage also differs markedly: certain datasets includea single session suitable for early prototyping, whereas others provide longitudinal recordings that enablestudies of temporal stability and extended authentication protocols. Validating algorithms therefore demandsdatasets with accurate ground-truth labels, sufficient sample sizes for statistical power, and representativepopulations spanning usage conditions. Cross-dataset comparisons are complicated by differences in hard-ware, collection protocols, stimulus paradigms, and subject demographics, underscoring the need for domainadaptation and careful generalization when designing systems for varied contexts. Table 7 summarizeskey datasets frequently cited in gaze-authentication research, highlighting distinctive characteristics, scale,hardware configurations, and application relevance.

Table 7. Key Datasets for Gaze-Based Authentication Research
Dataset Modality/Context Subjects/Sessions Sampling/Hardware Stimuli Identity Labels Notes

GazeBase [15] Desktop,multi-stimulus Large-scale,longitudinal Research-gradeeye trackers Mixed (reading,pursuit, saccades) Yes Longitudinal; suitable fortemporal stability and ID
GazeBaseVR [16] VR/HMDbinocular Large-scale,longitudinal Head-Mounted Display (HMD)-integratedtrackers VR tasks Yes VR context; binocular signals;cross-domain studies
NVGaze [51] Near-eye dataset — Near-eye sensors Gaze calibrationtasks Yes/Meta Anatomy-informed;low-latency benchmarks
Gaze360 [18] In-the-wildappearance-based ∼238 subjects RGB cameras,unconstrained Free viewing Indirect Robust appearance-basedestimation
LPW [17] Pupil detection 22 Unconstrainedvideos Free viewing N/A Pupil/feature detectionbenchmarking

5 Applications and Use Cases
This section investigates application domains for gaze-based biometric authentication deployment, examiningunique requirements, challenges, and opportunities across domains from high-security commercial toconsumer applications requiring seamless user experiences. Each domain has different accuracy, latency,environmental, and usage specifications requiring tailored implementation strategies. Figure 3 visualizesthese diverse domains and system adaptations.

Figure 3. Gaze-Based Authentication Deployment Scenarios and Application Domains

This application landscape illustrates the diverse deployment scenarios where gaze-based authenticationprovides unique advantages. Each application domain presents distinct requirements regarding accuracy,speed, environmental conditions, and user experience, necessitating tailored approaches to system designand implementation (see Table 8).
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Table 8. Deployment Domains and Requirements for Gaze-Based Authentication
Domain Primary Requirements Typical Hardware Auth Mode Reported Metrics (examples) Notes

Desktop/Workstation High accuracy,continuous auth,low friction
Desktop IR trackers Continuous +periodic Low EER in controlledlab settings Enterprise,research labs

Mobile/Tablet Robust to motion/lighting,low power Front RGB cam Quick unlock +in-app Moderate FRRin the wild Short sessions,ambient use
Wearables/VR/AR Hands-free,low latency,comfort

HMD-integratedtrackers Continuous Varies by HMD,task XR privacy/safetyconstraints
Automotive Safety-critical,reliability Integrated cameras Continuous +attention Robustness >raw EER Must not hindersafety
Smart Home/IoT Convenience,shared devices Embeddedcams/sensors Event-based PAD emphasis Multi-user,ambient contexts

5.1 Desktop and Workstation Security
Desktop and workstation security utilizes controlled environments and computational resources for high-accuracy gaze-based authentication. Desktop settings provide consistent user positioning, controlled lighting,and ample compute, enabling sophisticated authentication methods. These conditions support high accuracyand integrate smoothly with established workflows [184].
5.1.1 Enterprise Security Applications
Enterprise environments are well-suited to gaze-based authentication because operations are centrally man-aged with strong security and productivity requirements. These settings handle sensitive data and regulatoryobligations, so authentication must be low-friction while defending against both external and insider threats[29, 185]. Trading platforms use gaze-based authentication for continuous trader verification when accessingconfidential market data and executing high-risk transactions. Gaze pattern stability provides uninterruptedverification without disrupting operations while increasing financial transaction security. Health informationsystems use gaze authentication for electronic patient record and medical equipment access, enforcingHealth Insurance Portability and Accountability Act (HIPAA) compliance. Hands-free operation benefits ex-amination rooms where contact may be impractical due to infection control or sterile condition requirements[186, 187]. Government and defense systems benefit from gaze-based authentication for sensitive dataprotection and secure facility access. High-security environments leverage inherent anti-spoofing propertiesand continuous authentication for constant security monitoring. Research and development facilities usegaze authentication to secure intellectual property while permitting uninterrupted legitimate user access.This increases productivity while maintaining security, especially in team environments requiring sharedresource access with personal accountability [185, 188].
5.1.2 Personal Computer Security
Personal computer security applications focus on protecting individual user privacy and data while providingconvenient authentication for home environments. These applications balance security needs, user accep-tance, and economic considerations, recognizing individual users have different priorities, budgets, technicalskills, and usage patterns compared to enterprise environments [12]. Password substitution schemes usegaze-based authentication instead of conventional passwords, providing security from password-relatedvulnerabilities while enhancing convenience and reducing cognitive burden. Literature reports significantuser preference for gaze-based authentication, especially among users with password handling challenges.Multi-factor authentication complemented by gaze biometrics creates secure schemes robust across attackvectors while remaining understandable to users with minimal security knowledge. This integration yieldsauthentication systems combining gaze patterns with standard factors [189]. Parental control software usesgaze-based authentication to restrict content or application access by user identity, leveraging the inherentdifficulty of overcoming gaze authentication for effective access control against children or unauthorizedparties. Privacy-preserving applications implement gaze authentication for private document, communica-tion, and sensitive operation access. Continuous authentication systems enable automatic shutdown uponunauthorized party detection, ensuring constant privacy protection without requiring active user securityactions [190, 191].
5.2 Mobile and Wearable Device Authentication
Mobile and wearable device authentication leverages ubiquitous mobile technology with integrated eye-tracking capabilities, supporting gaze-based authentication across diverse user populations and usage
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environments. Implementations must address device mobility, environmental changes, and resource con-straints including battery limitations, computational capability, lighting variations, and location changesaffecting performance. Mobile platforms offer advantages and challenges, promising widespread applicabilitywhile requiring novel approaches to overcome technical and usability issues [50].
5.2.1 Smartphone and Tablet Security
Smartphone and tablet apps leverage front-facing cameras and on-device compute to deliver gaze-basedauthentication without dedicated hardware, broadening accessibility for mainstream users. Designs mustaccount for mobile usage patterns—handheld motion, user movement, lighting variability—and remaineffective across device orientations and operating modes. Gaze-based device unlocking can replace PINs,passwords, or fingerprints, improving convenience while mitigating shoulder-surfing risks and passcodecomplexity. Integration with existing platform security services and protocols simplifies deployment andpreserves compatibilitywith familiar applications. Mobile payment authentication uses gaze-based biometricsfor financial payments, combining device ownership and biometric authentication for effective two-factorauthentication in high-value transactions, addressing mobile financial service security issues [192, 193].Application-specific authentication uses gaze-based biometrics to control access to specific applicationsor datasets, enabling rigorous access management based on user identity and context. This strategybenefits shared device environments and sensitive applications like banking, healthcare, or enterprisesystems requiring stringent protection. Continuous authentication monitors user identity during sessionsand automatically secures devices upon detecting untrusted users. This prevents unauthorized accesswhen devices are unattended while ensuring seamless experiences for trusted users without intrusiveauthentication requests [194, 195].
5.2.2 Wearable Technology Integration
Wearable computing integration enables gaze-based authentication in smartwatches, fitness trackers, smartglasses, and other devices, providing convenient hands-free authentication across everyday activities.Applications must work under strict power and computational constraints while maintaining reliabilitythrough innovative algorithmic optimization, energy efficiency, and interface design [74, 41]. Smart glassesauthentication leverages native eye-tracking functionality for hands-free interface communication andcustomized user experiences. Combining gaze authentication with augmented reality enables context-awarecomputing while addressing privacy and security concerns in public spaces. Personalized fitness trackersuse gaze authentication for accurate health data attribution while protecting privacy. Automatic userrecognition enables device sharing without compromising data integrity, essential for family fitness trackingand shared device usage [196, 197]. Smartwatch security programs utilize gaze-based authentication fordevice unlocking and payment verification, complementing security for devices vulnerable to theft or loss.Programs integrate with existing platforms developing robust architectures protecting devices and services.Medical technology implements gaze biometrics for wearable medical equipment access and accurate patientdata capture. Authentication system reliability and security are critical in medical environments where dataintegrity affects patient care and unauthorized access compromises safety and privacy [198, 199].
5.3 Automotive and Transportation Security
Gaze-based authentication in automotive and transport security enables vehicle access control, driveridentification, and system personalization. Authentication solutions must meet high dependability, safety,and security standards, performing reliably under harsh environmental conditions including temperaturevariations, vibration, changing lighting, and requiring fail-safe operation ensuring vehicle safety integrity.The automotive setting offers unique benefits with predetermined driver locations relative to systems, whilepresenting challenges related to safety-critical functions and seamless integration with existing vehiclesystems [200, 201].
5.3.1 Vehicle Access and Personalization
Motor vehicle personalized access systems incorporate gaze authentication replacing traditional key-basedcontrol, enabling automatic vehicle settings adjustment based on driver identity. This technology providesimproved user experience with enhanced security and convenience while requiring high security and depend-ability under diverse environmental conditions with fail-safe measures preventing lockout or misuse. Keylessentry systems use gaze-based authentication for vehicle access without physical keys or fobs, increasingsecurity while reducing risks frommisplaced or stolen keys. Driver recognition systems automatically identifyregistered drivers and adjust vehicle settings including seat positions, mirrors, temperature, and infotainmentoptions while providing ongoing identity authentication during operation [202, 203]. Fleet managementsystems utilize gaze-based authentication to monitor driver identity and ensure operational procedurecompliance. Real-time driver identity monitoring enhances fleet security and accountability, preventing
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unauthorized use while monitoring behavior and ensuring safety regulation compliance. Shared vehicleauthentication uses gaze-based biometrics for car-sharing and ride-sharing access control, ensuring accesslimitation to authorized individuals. This technology enables smooth access experiences for shared mobilityservices by eliminating physical key exchange requirements [204, 205].
5.3.2 Driver Monitoring and Safety Systems
Driver safety and monitoring systems combine gaze authentication with attention monitoring and fatiguedetection to enhance vehicular safety while facilitating identity confirmation. This provides end-to-endsolutions addressing security and safety issues through integrated gaze analysis systems requiring reliabilityunder all driving conditions with robust algorithms differentiating normal gaze fluctuations from potentialsafety threats while maintaining accurate identity verification. Attention monitoring systems utilize gazetracking technology to determine the attentiveness and alertness of drivers, with the added benefit ofproviding continuous identity verification. The integration of safety monitoring with authentication createscomprehensive driver surveillance solutions capable of detecting both unauthorized drivers and attentionlapses that could undermine safety. The addition of fatigue detection combines gaze authentication withalgorithms for determining fatigue levels and thus ensures that only alert, authorized drivers are operatingthe vehicle. Such a feature is highly applicable in situations like commercial transport and long-distancedriving, where driver fatigue poses significant safety issues and regulatory necessities can demand constantmonitoring of drivers [206, 207]. Impairment detection systems are essential for monitoring eye movementpatterns to identify signs of driver impairment, while also ensuring ongoing identity authentication. Thisfeature allows such systems to limit vehicle use by unauthorized or impaired drivers through instantaneousevaluation of gaze traits that can indicate intoxication caused by alcohol, drug use, or health conditionsthat compromise driving safety. The integration of emergency response functions uses driver identity datacollected from verification based on gaze to enable individualized emergency actions and relevant medicalinformation during accidents. This feature improves emergency response efficiency and patient outcomesby allowing first responders to obtain critical information related to driver identity, medical conditions,emergency contact numbers, and other relevant information that can affect emergency treatment decisions[200, 201].

5.4 Smart Home and IoT Applications
The use of smart home technology in combination with the Internet of Things (IoT) supports gaze-basedauthentication paradigms by adding them to environmental control systems, home security systems, andambient computing platforms. This combination supports robust authentication features that can easilyintegrate into the growing ecosystem of networked devices found in modern homes. Such applications oftenrun under challenging environmental conditions and need to support a broad range of user populationsand usage patterns that include different levels of technology expertise, varying physical skills, and diversehousehold configurations that include children, older adults, and visitors that require different degrees ofaccess and engagement with the system [208, 209].
5.4.1 Smart Home Security and Ambient Computing
Residential security systems integrate gaze-based verification with traditional lock functionality, improvingsecurity and convenience. These systems must provide consistent performance under varying environmentalconditions, lighting, weather, and diverse user demographics [210, 211]. Intelligent lock systems employ gazeauthentication for keyless access, eliminating conventional keys while providing security against lock picksand duplicates. Integration with smart home networks enables comprehensive security solutions combiningsurveillance with identity-based interventions. Visitor management systems incorporate gaze authenticationfor access control while ensuring privacy. In shared households, gaze authentication provides customizedaccess control and settings for different members, supporting age-restricted filtering and personalized deviceconfigurations [210, 211, 208, 209]. The applications of ambient computing and personalization use gaze-based authentication to create adaptive surroundings tailored to user identity and preference without explicitinteraction. This provides an example of smart environments where the technology permeates daily life bymeans of non-intrusive authentication and personalization technologies [53, 212]. Environmental controlsystems use gaze-based authentication mechanisms to switch lights, temperature, and other parametersautomatically according to the identity of the person. Entertainment system customization assists withindividualized content suggestions and access controls, but the inclusion of appliances adds personalized useand security for smart devices. Voice assistant customization utilizes gaze and voice biometrics for improvedmulti-modal authentication for ambient computing settings [213].
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6 Challenges and Future Directions
This section analyzes current limitations, research needs, and potential developments in gaze-based biometricauthentication. We outline adoption hurdles while highlighting promising research avenues. Improvementrequires addressing technical limitations and system issues including standardization, user acceptance,and real-world implementation. The challenges and opportunities illustrate complex interactions betweentechnological advances, user expectations, and practical limitations. Understanding these challenges enablesbalancing current limitations with innovations for widespread implementation across applications [13, 14,137].

Figure 4. Research Roadmap for Gaze-Based Authentication (2024-2035)

This research roadmap illustrates the evolutionary path from current challenges to future opportunitiesin gaze-based authentication, showing the progression from addressing immediate technical limitationsthrough near-term research priorities and medium-term development goals to achieving the long-term visionof mature, standardized deployment across diverse application domains.

Figure 5. Risk Assessment Matrix for Gaze-Based Authentication Systems

This challenge–solutionmatrix illustrates how current research systematically addresses core limitationswhile
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creating opportunities for advanced applications and broader societal impact in gaze-based authenticationsystems.
Table 9. Risk Assessment and Mitigation Strategies for Gaze-Based Authentication

Risk Category Risk Level Impact Likelihood Mitigation Strategies Research Priority

Spoofing Attacks High Critical Medium CR tasks (randomized stimuli), Pupil LightResponse (PLR) cues, blink/microsaccadedynamics, OPC checks; anti-synthetictemporal/spectral analysis; fusion with pe-riocular/face [10, 38, 137, 159]

Very High

Privacy Breaches High High Medium On-device inference; encryption atrest/in-transit; HE/SMPC/DP; dataminimization [119]
High

Environmental Variations Medium Medium High Adaptive illumination; robust features;auto-recalibration/drift detection; qualitygating [99, 179]
High

Hardware Limitations Medium High Low Redundancy; watchdogs; safe fallbackmodes; health monitoring Medium
User Acceptance Medium Medium Medium Implicit calibration; low-friction User Ex-perience (UX); transparent privacy con-trols; clear feedback

Medium

Calibration Drift Low Medium Medium Online adaptation; drift detection; peri-odic light-touch recalibration [175, 174] Medium
Health Conditions Low High Low — Low

6.1 Current Limitations and Technical Challenges
Despite substantial progress in gaze-based authentication, inherent limitations still constrain practicalityand usability across contexts and user populations. These span hardware accuracy and environmentalrobustness; algorithmic constraints driven by inter- and intra-person variability and temporal drift; emergingattack vectors; privacy risks; and usability factors such as acceptance and system complexity. Systematicallycharacterizing these limitations is essential to steer future research, set realistic performance targets, and de-sign mitigations without compromising core quality attributes. Addressing them will require interdisciplinarycollaboration that integrates advances in hardware, algorithms, security evaluation, and human–computerinteraction.
6.1.1 Hardware and Environmental Constraints
Hardware limitations remain a primary obstacle to wide-scale deployment of gaze-based authentication,constraining effectiveness and viability across application domains. Current eye-tracking technology facespractical challenges that force trade-offs among accuracy, cost, power consumption, and environmentalrobustness. Consumer-grade trackers typically lag research-grade devices in accuracy, leaving difficultauthentication tasks out of reach on commodity hardware. This accessibility–precision tension complicatesconsumer deployment: broad availability often comes at the expense of the fidelity needed for reliabledecisions. Sensitivity to illumination, infrared interference, and occlusions further degrades tracking qualityand authentication performance, and many schemes still assume controlled conditions rarely met in practice[103]. Persistent calibration requirements also hinder usability; despite progress in automatic methods,most systems still need user-specific calibration that is time-consuming and may need to be repeated,creating friction that suppresses adoption and everyday use. Moreover, technical limitations around powerconsumption limit the use of gaze authentication systems in mobile and wearable technology since eye-tracking hardware and computational processes come with significant power requirements, thereby reducingbattery life and making continuous authentication applications less practical. Therefore, development ofenergy-conserving gaze authentication systems is another key area of research that has to balance thedemands of authentication performance against the need to conserve energy [53, 105].
6.1.2 Individual Variability and Temporal Stability
The uniqueness of gaze patterns provides biometric verification with both great promise and challengingsituations, creating a paradox that inherently contains distinctive features that make it challenging todevelop algorithms. This uniqueness requires using sophisticated methods that are capable of distinguishingrelevant individual features from momentary fluctuations. Inter-individual variability in gaze patterns can besubstantial, requiring systems to model diverse human behavior while maintaining discrimination capability.Factors such as age, visual acuity, and cultural background influence patterns, creating challenges forconsistent performance across populations. Intra-individual variability from fatigue, emotional state, and
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environmental conditions requires systems to distinguish natural variations from impostor attempts [36, 214].Temporal stability varies across gaze characteristics, with some features stable over time while others changedue to aging, health conditions, or learning effects. Understanding long-term stability is crucial for robustsystems. Learning effects may improve consistency but create vulnerabilities if attackers can replicatepatterns [215].
6.1.3 Security Vulnerabilities and Attack Vectors
Inherent vulnerabilities in gaze-based authentication remain a persistent challenge, demanding carefulanalysis and design to maintain effective security across diverse attack scenarios. As technology advances,dynamic risk patterns emerge with attackers designing increasingly subtle tactics. As system deploymentincreases, attackers are expected to develop more elaborate assault techniques exploiting technologicalvulnerabilities and human conduct, emphasizing constant security protocol enhancement and threat profilingfor effective countermeasures against developing attack vectors. Presentation attack evolution continueswith attackers developing new approaches for avoiding gaze-based authentication schemes. Although currentframeworks are capable of detecting simple replay attack attempts, advanced approaches to spoofing, such asthe development of artificial data or mechanical stimulations, pose serious challenges that justify developingcountermeasures. Template security is of utmost concern for gaze-based authentication schemes, largelybecause of the large behavioral data incorporated into gaze templates that potentially could be used bymalicious parties for purposes other than authentication. This scenario raises serious privacy issues andoffers opportunities for malicious parties intending to breach user data, consider identity theft, unauthorizedbehavioral inspection, or conduct other malicious operations. The security vulnerability related to covertperception results from the capabilities of attackers to monitor and capture user gaze streams covertly,potentially with the application of social engineering mechanisms. The potential gaze streams at issueare obtainable through video observation and custom-built hardware, making them different from otherbiometric modalities, which are more difficult to monitor covertly [10, 87, 163].
The vulnerabilities inherent in machine learning, especially for gaze verification systems, are open to exploita-tion through adversarial attacks, which manipulate input data to result in misclassification. Given the growinguse of machine-learning–based verification, it is essential to characterize and mitigate these vulnerabilitiesto preserve system integrity. The threat is significant: adversaries can mount remote, input-space attacksusing carefully crafted samples that appear benign to human reviewers yet induce misclassification [85].AI-generated synthetic gaze can produce realistic sequences (e.g., via GANs/VAEs) that evade conventionalsystems. Effective countermeasures should advance liveness/PAD and develop robust classifiers that detectsubtle temporal- and frequency-domain artifacts in synthetic data, while privacy-preserving methods mustprevent inference of cognitive or health attributes inadvertently encoded in gaze [216, 161].
6.2 Research Gaps and Future Directions
Our review identifies several key research gaps in gaze-based biometric authentication. Many of these gapsare interrelated and will require coordinated efforts spanning data collection, modeling, evaluation, anddeployment. A persistent issue is the over-reliance onWestern samples with limited cross-cultural validation.Differences in reading direction, attentional conventions, and norms of eye contact can affect stabilityand discriminability, risking biased performance. Future work should establish standardized cross-culturalprotocols and develop adaptive algorithms that accommodate diversity without explicit profiling to ensurefairness across populations. Closely linked is the relatively underexplored question of temporal stability andplasticity of gaze patterns. Long-term stability remains poorly characterized, particularly with respect to aging,medical conditions, and environmental variation over extended periods. The visual system changes withage—presbyopia, reduced contrast sensitivity, slower saccades, and shifts in attentional allocation—which candegrade authentication accuracy over time. Medical impairments, corrective interventions, and progressiveocular disorders introduce additional temporal variation that systems must accommodate without increasingspoofing risk. More research is needed on flexible systems that track gradual change, define principledre-enrollment strategies for different user groups, and disentangle legitimate temporal variation fromadversarial manipulation.
The proliferation of AI-generated synthetic gaze data poses severe security risks, making reliable detectionand mitigation imperative. Modern generative models—GANs and VAEs—can synthesize highly plausi-ble gaze behaviors that threaten deployed mechanisms. As realism increases, defenses must co-evolve:liveness/PAD should advance, and robust authentication models must discriminate minute artifacts infabricated sequences. In parallel, privacy-preserving protocols are needed to prevent leakage of sensitiveattributes from gaze patterns, including cognitive processes, health status, and emotional state inferred fromeye-movement dynamics. Progress is further hindered by the absence of standardized evaluation methods,reference datasets, and agreed-upon metrics, which prevents fair comparison across populations, systems,
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and deployment scenarios. Closing this gap requires benchmark platforms that reflect real-world variabilityin users and environments, standardized datasets spanning deployment contexts, and clear reporting guide-lines to support reproducibility and rigorous comparison. These research needs create opportunities formethods that directly address current limitations while enabling new applications; priorities include adaptivealgorithms for diverse populations, resilient security frameworks against evolving attacks, standardized testprocedures, and privacy-preserving modalities to enable safe deployment of gaze-based authentication.
6.3 Emerging Trends and Future Opportunities
The trend of technological convergence opens potential possibilities for gaze-based authentication while,at the same time, introducing challenges in need of innovative research approaches. Emerging trendsneed to be comprehensively understood in order to develop research frameworks and ensure that systemshave sufficient malleability for networked technological environments. Machine learning and artificialintelligence advancements are a main driving factor for gaze-based authentication advancements. Core tothis advancement are deep learning approaches, allowing increasingly advanced gaze analysis algorithms tobecome progressively efficient in smaller numbers of training datasets and increasingly robust in variabilityin environmental conditions. Convolutional and recurrent neural networks are particularly effective forimproving gaze estimation and authentication accuracy: they capture subtle pattern nuances and adapt asconditions change without hand-engineered features. Edge computing is reshaping deployment by movingsubstantial computation onto mobile and embedded devices, reducing latency, strengthening on-deviceprivacy, and enabling strategies previously limited by compute or connectivity constraints [95].
Hardware engineering developments enable new applications through enhanced sensor functionality, creat-ing small, accurate, energy-efficient eye-tracking devices integrated into consumer products. Advances incamera technologies, infrared illumination, and signal processing enable consumer-grade devices achievingresearch-grade performance while maintaining practical resource requirements and power consumption.These innovations are crucial for mobile andwearable technologies where size, weight, and battery limitationstraditionally prevented sophisticated eye-tracking deployment.
Immersive computing platforms employing augmented and virtual reality create new environments forgaze-dependent authentication techniques. These platforms offer unique integration opportunities withnatural user interactions through inherent gaze tracking for foveated rendering. However, they presentchallenges for authentication mechanisms in interactive three-dimensional environments with variable visualstimulation and dynamic orientations [19, 217].
Application domains are rapidly evolving: IoT growth creates opportunities for gaze-based authenticationacross new device classes but introduces resource and deployment constraints. IoT deployments requiremethods that operate under strict compute, power, and network budgets while still delivering security. Acentral challenge is to design lightweight algorithms that sustain acceptable performance and interoperateacross heterogeneous IoT platforms [208]. Autonomous and robotic systems present promising HRI usecases, enabling continuous operator verification to enhance safety and security. These systems mustoperate effectively in dynamic environments with mobile platforms, changing illumination, and varied userorientations, requiring robust algorithmsmaintaining authentication effectiveness through difficult conditions[218, 219]. Healthcare and medical practice offer prominent gaze-based authentication scenarios, drivenby hands-free operation needs and increased security for medical equipment and patient data. Healthcaremarkets require stringent robustness, safety, and regulatory compliance, necessitating specially designedmethodologies and careful validation. As a non-contact solution, gaze-based authentication suits hospitalsettings where other input methods may be impractical due to sterile conditions or patient care requirements[187]. Financial technology applications increasingly explore gaze-based authentication to enhance digitalpayment and banking platform security through continuous authentication and improved user experience.These applications require high security and reliability while maintaining user convenience and regulatorycompliance, offering opportunities for advanced authentication processes providing security integrationwithout compromising usability [186].
6.4 Recommendations for Future Research
Based on our analysis, we recommend targeted research areas addressing current gaps. Priority areasinclude standardization efforts, as the lack of widely adopted evaluation procedures hinders approachcomparisons and interoperable system development. Standard methodologies would enable fair resultcomparison and commercial viability. Longitudinal studies are essential for understanding long-term stabilityand performance. Current work uses small samples and short timeframes, limiting practical understanding.Research should address aging, health changes, environmental factors, and learning effects while developingadaptive algorithms maintaining security [137]. Cross-cultural validation ensures consistent operation across
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Table 10. Future Research Directions and Priorities
Research Area Priority Level Expected Impact Timeline Key Challenges Required Resources

Standardization Protocols Very High High 2-3 years Industry consensus,Regulatory approval Standards bodies,Industry collaboration
Anti-Spoofing Techniques Very High Critical 1-2 years Advanced attack methods,Real-time detection Security expertise,Attack datasets
Privacy-Preserving Methods High High 2-4 years Performance trade-offs,Regulatory compliance Cryptography expertise,Legal frameworks
Cross-Cultural Validation High Medium 3-5 years Global data collection,Cultural sensitivity International collaboration,Diverse datasets
Longitudinal Studies High Medium 5-10 years Long-term commitment,Participant retention Sustained funding,Research infrastructure
Hardware Miniaturization Medium High 3-7 years Technical limitations,Cost constraints Hardware R&D,Manufacturing partnerships
AI/ML Integration Medium High 2-5 years Algorithm complexity,Training data Computing resources,ML expertise

diverse populations, examining reading habits, attention strategies, and cultural protocols while developingadaptive algorithms without explicit profiling. Security evaluation frameworks must address conventional andemerging attacks including AI-generated patterns and advanced spoofing methods [220]. Methodologicaldevelopments include synthetic data generation for training while mitigating privacy concerns, requiringvalidation to ensure realistic behavior without artifacts. Explainable AI techniques enable understanding ofauthentication decisions and bias identification, crucial for trust and fairness [86, 221].
Federated learning enables collaborative development while preserving user privacy and data locality,avoiding centralized aggregation vulnerabilities. Real-world evaluation frameworks should replace laboratory-only testing to provide reliable vulnerability and capability measures [222].
7 Conclusion
This survey integrates 222 publications within a three-dimensional taxonomic framework combining authen-tication approaches, system architectures, and security evaluations, addressing gaps in previous literature.Unlike HCI-focused surveys, this work integrates threat-oriented security analysis with practitioner-focusedcomparisons across datasets, hardware, and deployments. Our systematic review methodology encom-passed multiple academic sources including major databases (IEEE Xplore, Springer Link, ScienceDirect, ACMDigital Library, MDPI), conference proceedings, and preprint repositories with rigorous inclusion criteriaprioritizing peer-reviewed studies with clear experimental protocols and quantitative metrics. The resultingtaxonomy provides researchers and practitioners with structured guidance for methodology selection, ar-chitectural decisions, and security considerations across diverse application domains. This comprehensiveframework enables systematic comparison of approaches while identifying critical research gaps and futureopportunities in gaze-based biometric authentication systems.
Physiological characteristics exhibit temporal stability and resistance to voluntary control, whereas behavioralcharacteristics facilitate drift-resilient calibration. Hybrid approaches consistently outperform single-modalitysystems—often by orders of magnitude in Equal Error Rate (EER)—delivering higher accuracy and strongerspoof resistance at the cost of greater complexity. Architectural trade-offs persist between precision andcost: desktop IR trackers offer the highest accuracy but are several times more expensive than consumeralternatives. Mobile/edge deployments are increasingly viable by leveraging on-device inference andadaptive calibration, addressing latency and privacy constraints. Cloud deployments provide scalabilitywhen appropriate privacy controls are in place, while state-of-the-art software pipelines can achieve usableaccuracy using only commercial-off-the-shelf cameras, broadening deployability without specialized sensors.Security remains a central concern, necessitating effective liveness detection, presentation-attack detection,multimodal fusion, and strong template protection across diverse deployment scenarios.
Enterprise desktop deployments benefit from continuous verification, whereas XR and automotive applica-tions are constrained by latency and safety requirements that mandate real-time processing and fail-safemechanisms. Mobile and IoT scenarios require a careful balance of power efficiency and privacy, oftenfavoring edge processing to reduce data transmission while maintaining authentication effectiveness. Health-care settings are strong candidates given hands-free interaction needs and stringent privacy regulation,while financial trading platforms leverage continuous monitoring for high-value, high-security transactions.Smart-home and ambient-intelligence use cases are promising through sensor-network integration, though
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heterogeneous devices and limited standardization remain hurdles. These varied demands call for adap-tive authentication protocols that adjust to context-dependent security requirements and environmentalconstraints.
Three core weaknesses hinder widespread adoption: (i) an accuracy–cost imbalance in commodity hard-ware; (ii) limited real-world robustness across diverse environmental conditions; and (iii) the absence ofstandardized evaluation protocols that enable meaningful performance comparisons. Privacy preservationand fairness across cultural groups remain critical challenges requiring immediate attention. Our analysisidentifies priority research areas addressing these limitations through standardized evaluation protocolsaligned with ISO/IEC 19795-1 and 30107-3 standards, enabling consistent and threat-aware testing ofresearch contributions. Enhanced presentation attack detection must implement temporal and spectralsignature analysis to counteract replay attacks, mechanical simulation, and AI-generated artificial gazepatterns while hardening template security and session robustness mechanisms. Privacy-preserving learningmethodologies, including federated learning, differential privacy, and homomorphic encryption, should beintegrated with architectures optimized for end-device inference to minimize exposure and transmission ofsensitive biometric data. Cross-cultural validation and longitudinal stability research must develop adaptiveauthentication mechanisms capable of distinguishing between legitimate temporal changes and fraudulentaccess attempts. Application-specific benchmarks and datasets for XR, automotive, and mobile/IoT domainsshould be published with reproducible evaluation pipelines to accelerate practical deployment. Limitationsinclude English-language bias potentially underrepresenting regional research contributions, rapidly evolv-ing AI-based attack methods that outpace defensive measures, and varied evaluation protocols that limitmeta-analysis capabilities across studies. Integrating sound engineering practices, comprehensive evaluationframeworks, and privacy-by-design principles can establish gaze-based authentication as a trusted secu-rity component across diverse applications. Realizing this potential requires coordinated efforts spanninghardware design innovation, algorithm development, security evaluation standardization, and internationalcollaboration on regulatory frameworks.
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