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Abstract

Amid all the hype around the economic potential of Al technologies, there is a growing risk of data analysis
overkill in many applications. That risk is particularly high for the forecasting and decision-making models
being proposed in social contexts such as economic policy, financial investment, and corporate decisions.
Common research practices in those areas keep focusing on incidents of statistical discoveries. They omit
the substantial reliability issues stemming from the nature of the data that offers very limited 'learning
potential’ for the machine learning (ML) algorithms. In this paper, | focus on the use of ML algorithms applied
to such forecasting problems. | illustrate the reliability issues with a detailed example that builds a stock
investment strategy by using the XGBoost algorithm on a large data set. The example demonstrates how
easy it is to discover seemingly interesting random patterns when we fit over-parameterized models on
historical data. The results also offer practical methods to investigate the statistical flukes and the reliability
issues that are concealed by complex algorithms of artificial intelligence being blended with natural human
ignorance, as seen in popular practice.

Keywords: forecasting, reliability, machine learning, asset pricing, factor investing

1 Introduction

"It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of
foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of light, it
was the season of darkness, it was the spring of hope, it was the winter of despair". Tale of Two
Cities by Charles Dickens

This famous opening line of the Charles Dickens classic, Tale of Two Cities, works perfectly to encapsulate
the main theme of this article in a nutshell. The simple and timeless language of the novel fits quite well to
our data-obsessed times.

"It is the best of times, it is the worst of times, it is the age of artificial intelligence, it is the age of
human ignorance, it is the epoch of data analytics, it is the epoch of statistical deception."

In the current digital age, there is a euphoric race both among businesses and academics to showcase the
latest machine learning (ML) applications in their own practice areas. We see an exponential growth in
ML-driven research output and commercial applications that utilise increasingly complex predictive models
with ever-larger data sets. Amid all the buzz around the economic potential of artificial intelligence (Al)
technologies, however, there is also a growing risk of data analysis overkill in many cases. The rush to catch
up with the self-fulfilling 'Al revolution’ wave is inevitably generating misused, misguided implementations
alongside many fascinating products. That risk is particularly high for the forecasting and decision-making
models being proposed in social contexts such as economic policy, financial investment, corporate strategy
and such.

In this paper, | focus on the use of ML algorithms applied to forecasting problems. | discuss the unique
nature and the limitations of historical data sets that have stochastic state-and-time dependent variables. |
illustrate the specific issues with detailed examples from the financial investment strategy applications.

The main sources of concern about the excessive use of ML techniques to build decision models are as
follows:
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1. A unique sequence of historical events caused by incidental patterns of stochastic factors, and
complex confounding effects, do not provide useful data sets that are sufficient to make reliable
inferences about the future. In other words, unlike many successful applications such as image
recognition, complex pattern discoveries within historical data sets, may not amount to 'learning’
or 'intelligence’ of any sort.

2. Although the Train-Test-Validation cycle of the ML algorithms may generate incidents of
attractive back-test results (i.e. performance validations) on historical data, the relation between
the performance metrics and future reliability may be highly uncertain.

3. In cases where (1) and (2) are true, there are significant reliability and outcome bias issues in
ML-driven models. A forecasting solution that looks encouraging with historical data, may easily
be an over-fitted fluke driven by a lucky draw from a large random set.

Surprisingly, neither academics nor professionals in social sciences tend to sufficiently address these serious
issues. The hype to assign a flashy "Al" label on new products seems to trump the obvious reliability
challenges. Probably fascinated by the speed and efficiency of ML algorithms, the data analysts seem to
ignore the significant likelihood of making incidental, lucky discoveries with big data. Also, they tend to
forget that a longer history, occurred and evolved with unique circumstances in time, does not necessarily
mean a bigger data set with relevant and useful information.

The following sections will discuss the reliability risks in further detail along with some examples from the
finance literature. At this point, however, it is probably a good idea to offer a bit more clarification about the
concepts mentioned above for the non-expert reader.

1.1 Data mined flukes versus reliable insights

To understand the outcome bias and statistical flukes found in historical data analysis, let’s consider an
extreme case where the target variable (i.e predicted or forecast variable) is completely random. Assume
that you are the manager of a company named Lucky Bets Co. You believe in luck and in lucky people. You
are in the gambling business, but you do not place bets on games. Instead, you place bets on lucky people.
You provide funding for the gamblers that you think are lucky to win at the roulette table in return for a
large share of the prizes they win.

The skillful data analysts of Lucky Bets Co. collect a large historical data set on many attributes of the
addicted roulette players. The data set includes the players’ winning percentage over the past 5 years,
amount of money they lost, age, height, profession, post code, shoe size, hair color, first letter of their names,
star sign, and many others. The analysts divide the data set into Train, Test and Validation samples, and then
let the ML algorithms run over-parameterized deep learning models, as they always do. After millions of
iterations, the analysts provide a combination of attributes that predict a higher probability of winning at the
roulette table. The results are confirmed in the Validation (hold-out) sample as well. All standard statistical
measures check within the Test and Validation sub-samples.

What would you do? Would your expectation of winning probability change for the people with the right
attributes? Assuming everyone plays the same game with the same odds, would you bet on the people with
"statistically proven" success? Are there lucky characteristics, or lucky data analysts here?

Your betting decision actually does not matter. It will not change the odds of winning one way or another.
The data analysts did not do much more than wasting electricity. They were lucky. Also, it was almost
inevitable that they would find a fluke that works after so many iterations over countless combinations of
gambler attributes. The historical results, no matter how statistically significant they may look, provide no
guidance for the future outcomes that are completely random. The analysts just documented an observation
bias - a lucky historical outcome with no implication for the future. That is because each roulette run is an
independent random event by construct.

On the other hand, it may actually be a good strategy to go along with the model and promote it as the new,
cutting-edge Al-Powered innovation by Lucky Bets Co. If, somehow, it catches another lucky episode, it
may bring extra fame and fortune. (Actually, there are online betting companies, especially in sports betting,
that offer Al models for their customers. See examples such as DeepBetting, Betldeas or Infinity Sports Al
among others.)

Typically, when there is a proposed forecast model, or a decision method, we are likely to see some instances
of out-of-sample performance metrics as the key results. An instance of out-of-sample test is considered
sufficient to prove the suggested model’s worth. The reliability risk and potential 'observation bias’ originating
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from the iterative data mining embedded in over-parameterized ML models are mostly downplayed. As a
result, the real important question is mostly left unanswered.

Given that we are able to find some model that performed well in the past, how confident are we that the model
will provide significant performance in the future as well? What is the correlation of the actual implemented results
with the (out-of-sample) past performance that we could dig out by sifting through the data?

In the case of Lucky Bets Co., we know the answer. The correlation is zero. If we keep repeating the
exercise of finding new hidden patterns with strong past performance, by utilising more and more data, and
then we implement each model as a separate Al-powered betting strategy, we surely will find out that the
documented past results have no relevance for future outcomes. Such an analysis would serve as the proper
back-testing experiment to provide some guidance about the reliability of the methods.

Those experiments almost never show up in the results of ML-driven forecasting research, especially in
the social science fields such as economics and finance. Both academic researchers and professionals keep
showing instances of statistical discoveries, instead. Their common audience usually cannot distinguish the
lucky coincidences hidden behind the complex and automated algorithms.

The computational power of the ML algorithms help the empirical researchers with the fast discovery
of interesting patterns, but the findings might be just an 'observation bias’ - a fluke of the unique set
of circumstances that might not repeat ever again. Therefore, when we try to import the predictive Al
technologies to forecasting practices, one of the first questions to ask has to be: "How similar is my case to
Luck Bets Co.?"

Many examples of empirical research output that are being promoted with sparkling Al labels might not be
far from just another Lucky Bets exercise. It is common to find similar examples, especially in fields that rely
on non-repeatable, state-and-time dependent data. Just to mention a few, Berman et al. (2021) [1], presents
a model that integrates big data analytics with strategic planning to optimize business decisions; Lee and
Chen (2020) [2] presents a machine learning model that predicts both employee success and retention;
Chen and Guestrin (2016) [3] predicts political instability with ML models fitted onto social media data, and
many others. In each study, we see some contemporaneous covariance among variables being documented
with no in-depth discussion about cross-validation and reliability issues originating from particular methods
and data samples used.

Another example, Erel et al. (2021) [4], presents results of decision tree models to select directors for
corporate executive boards. The target variable used is "director success" which is some complex proxy
measure constructed with authors’ subjective discretion. It includes ad hoc indicators of shareholder
popularity and company profitability. The ML algorithms run an over-parameterized decision tree model on
a predetermined training sample and a fixed test sample. The model iterates over tens of different personal
attributes, from gender and age, to the name of the university that the director graduated from. There is
no cross-validation across different periods, industries, etc. There is no proper validation experiment over
time either. The incident of the statistical results are particular to a very narrowly defined data construction
process.

To find some interesting-looking pattern in large data sets does not require much skill since we have the
technology to automatically iterate over pretty much countless parameter combinations. Those empirical
research articles, and many other similar work, are arguably not that far away from the Lucky Bets case.
Although the publications succeed in uncovering intriguing incidents of empirical results, future reliability of
the findings, as a useful forecasting model, is a wide open question.

Historical data sets used for forecasting models in social contexts usually do not offer the breadth for proper
cross-validation tests. After all, we have only one trail of the actual history. Therefore, Al methods that are
employed successfully in other areas, may be unsuitable, or misleading, due to the irreducible over-fitting
risk originating from the nature of the data sets. Quick and lazy ML applications with historical data require
scrutiny within their own context since the standard data validation methods are mainly not feasible.

1.2 A special case: Financial asset pricing and investment strategy applications

Finance has been at the forefront of digital automation and the commercial use of Al technologies. Financial
industry operates on an extremely digitized platform that produces immense amount of data, and the data
universe is mostly accessible for analysis. Data collection is relatively easy and straightforward. Financial
industry employees, especially on the trading and investment side, tend to be highly skilled in data analysis
and coding practices. At the same time, the potential reward of successful forecasting models can be very
high and fast especially in the trading and investment world.
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In addition to the general economic backdrop that motivates the use of ML models in finance, the academic
literature also provides some extra justification for the use of sophisticated predictive models in this field.
For example, the investment management industry makes use of models inspired by the academic asset
pricing literature. Contemporary empirical research in this field has developed around the Arbitrage Pricing
Theory (APT), introduced by Ross (1976) [5], and the Stochastic Discount Factor concept, introduced by
Merton (1973) [6], that lay out the framework for the empirical inquiries into the driving factors of financial
asset returns. The seminal work by Fama and French (1992, 1993) [71,[8] and a large body of empirical work
that followed the same path into the inquiry of asset returns, built a cultural tradition that is baked into
the contemporary curriculum of finance education. The highly-regarded Chartered Financial Analyst (CFA)
program also teaches the APT and related concepts that underpin the empirical inquiries into historical data
to search for the drivers (factors) of asset returns.

The basic idea is that the financial asset returns are determined by their sensitivity to (potentially many) risk
factors that the agents trade in the market place. It sounds like an axiomatic statement that opens up a wide
gate for the inquiry of those elusive factors.

The complex and efficient predictive machinery offered by the recent developments in Al technology are
welcomed as a powerful tool to work on the eternal questions of the investment industry and the asset
pricing academics: What drives the differences in asset returns? What should be the decision criteria to choose
the assets to invest for the short or the long term?

To answer those questions, quantitative finance professionals and academics dedicate a great portion of
their work to building predictive models for the asset return dynamics. Common empirical research practice
starts with an investigation of the so-called factors that show some covariance with the cross-sectional
variance of asset returns in hand. Once the candidates for useful factors and trading signals are found,
they are put into a back-testing process to validate their historical success. The instances of out-of-sample
back-test results achieved over a selected period is usually considered as a sufficient experiment result.
Reliability is mostly left out of the discussion.

With the advances in data access and computer power, the statistical discoveries became rather easy and fast.
Sequentially, the number of academic publications showcasing the discovery of new factors started to grow
rapidly during the early years of this century. From economic and financial indicators, to eccentric sentiment
and risk measures, numerous variables are thrown into predictive models with the hope of finding some
covariance patterns. The finance professionals started to implement such models for portfolio construction
and proprietary trading practices at an accelerating pace, as well. By the time we reached 2010s, the
asset pricing literature became a 'factor zoo’ as famously coined by Cochrane (2011) [9]. The criticism and
warnings about the scientific quality of the empirical findings began to accumulate.

The critics highlighted two key observations. One, the published articles were presenting obviously over-
fitted models that did not pass the statistical hurdle tests and the test of time. Two, the investment strategies
based on the suggested factors mostly failed to deliver returns documented in their back-tests. In other
words, the real out-of-sample tests proved that neither the predictive models nor the underlying theory was
able to deliver a decent reliability over time.

The published statistical results were not necessarily wrong or careless, however. The issue was that the
suggested models were not far from our Lucky Bets Co. example, again. People put too much faith in the
instances of pattern discoveries driven from over-simplified models. Even the factors suggested by Nobel
Prize winning Eugene Fama and Ken French’s work failed to repeat the documented patterns consistently,
once they were implemented as real investment strategy products. See Carhart (1997), Fama, French and
Carhart (2000), Fama and French (2015) [10, 11, 12] for more detail on that point.

As a result of humbling real-world validation experiences in the financial markets, the discussions on the
potential uses of ML-driven or other type of predictive models started to shift from euphoria to skepticism,
especially over the past 10 years. At this point, we can probably say that finance is more advanced in the
discussions about reliability compared to other social science fields.

The discussions are evolving in three main paths. The first path can be called the 'scientific quality’ argument.
Studies such as Bailey and Prado (2013, 2014), Prado (2020), Harvey et al. (2016), [13, 14, 15], [16, 17]
present strong arguments about the 'data mining’ and 'over-fitting’ issues. They discuss the rampant use of
statistical overkill and careless back-test practices spoiled by the ease of access to computational tools and
large data sets. The criticism raised by Prado and Harvey is mainly about the errors, tricks and and biases in
statistical inference. They are valid and crucial points that highlight the risk of false discoveries and wrong
inferences made in common research practices.
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However, the failures of the forecasting models in this field are not necessarily driven by the lack of diligence
in statistical analysis. It is driven by the fact that there is an irreducible reliability issue caused by the natural
instability of the system dynamics. To argue for scientific quality of the predictive models applied to naturally
unpredictable dynamics is somewhat redundant. After all, it is impossible to determine the causes of model
failure with confidence when the model is too simple relative to the stochastic complexity of the system in
hand. As the past research experience showed time and time again, no matter how robust your statistical
results may be, the estimated model may fail to perform, or become irrelevant, simply because of the evolving
complexity of the system not being captured by the available historical data.

Second path can probably be categorized as the 'benign over-fitting’ effort. Studies such as Kelly et al.
(2022) [18, 19] do not find the risk of over-fitting as an impediment to ML-based iterative search for hidden
patterns. Instead, they try to develop the machinery that let over-parameterized, over-fitted models to
automatically iterate towards a rather distilled form. They also let the ML algorithms to adjust over time, and
over different states, and also let the algorithms discover those adjustment rules independently from the
data. This line of research focuses on methods to distill signals without being limited by theory, or any other
priors. It is probably a step in the right direction with a powerful inspiration, but reliability is still mostly
missing in the discussion. Instances of good-looking back-tests are presented without a demonstration of
how reliably the complex models might perform relative to simpler decision rules over time.

The third path suggests an alternative use case for the ML algorithms. The work by Chean and Zimmerman
(2020) , and Chen and Valikov (2021) [20, 21] embraces ML-powered intentional data-mining to investigate
the reliability of the models proposed by the 'factor zoo' literature mentioned above. The approach is
a leap from simply documenting another discovery of factors towards an analysis of real out-of-sample
performance. With a multitude of different data-mined correlations that can easily present some historical
performance, this line of work aims to establish a benchmark for the value and usefulness of the models
that claim to have some prediction power.

| think Chen’s work is an example of how the Al technologies can bring a significant disruption to social
sciences and forecasting practices. By allowing the fast and automated search algorithms, ML models can
help us to devise tools to help distinguish a humble analysis that provides insights to highly complex and
fluid stochastic systems from a statistical fluke published with a dose of confirmation bias and academic
hubris.

Meanwhile, although similar discussions happen in parts of the investment industry, the commercial pressure
to roll out generic commercial products with a flashy Al-name continues. Take the "Al-labeled" exchange
traded fund (ETF), QRFT - QRAFT Al Enhanced US Large Cap ETF, for example. This ETF relies on "Al-
powered models" which are based on some back-tested historical correlations - not some "intelligence"
gained by learning from very large big data sets as we see in other fields. As seen in the Figure 1, there is no
convincing performance of any sort. The performance over the benchmark index converges to zero as you
would expect from any Lucky Bets exercise. In academia, as well, we can observe an intellectual inertia to
keep producing those incidental back-test results. The publication rate of such research will inevitably fade
away as their value-added is tested over time.

QRAFT Al ETF Performance Relative to S&P 500 ETF

1.3
1.2
11
1.0
0.9

0.8
2019-08 2020-08 2021-08 2022-08 2023-08 2024-0

Figure 1. Al-Powered Large Cap US ETF Performance; Source: www.qraftaietf.com

5/15



Motivated by the contributions of all three paths followed by recent finance literature discussed above, the
following section presents an example of an investigation into an ML-driven method applied to asset returns.

First, by using historical data on stocks and company characteristics, | run a decision-tree model (XGBoost)
to intentionally data-mine the factors that distinguish the Winner (high future return) and Loser (low future
return) stocks - similar to our Lucky Bets case. | demonstrate how easy it is to document some seemingly
successful back-test when you are not much concerned about cross-validation. Then, | run a series of
investigations to discuss how similar the case could be to the Lucky Bets scenario.

| do not use the ML techniques to show how we can predict Winners and Losers in the stock market. Instead,
| utilise the power of ML to show how reliable the employed data and methods might be for the specific
case in hand.

2 Material and Methods

Let's assume we have a problem of building an ML-based stock selection method that can possibly be
turned into an ETF product similar to the one mentioned above. However, the financial literature does
not offer much help about the predictors of stock returns. Although there are some obvious common
sense approaches to portfolio construction and investment, there is no formula to predict which stocks will
outperform the others over a certain period, say, the next 3 months or 2 years. Actually, there cannot be a
formula because, if there was one, it would be instantly exploited and vanish, anyway.

The markets facilitate exchange of expected risks and returns that fluctuate according to perceived opportu-
nities and costs that vary across numerous agents over time and economic conditions. Incidental clusters
of those expectations cause demand-supply imbalances to move the asset prices. Additionally, when the
underlying assets deliver unexpected positive or negative economic performance, share prices adjust so as
to remain consistent with changing conditions.

Although financial theory does not offer a magic formula, at least it provides the framework that allows
empirical investigations for the elusive, incidental or persistent risk factors that drive returns.

The equation for the expected asset return R; ; for the asset i at time ¢ is given by:

E[Rjt1] =Te(Bie - Xt) ) (1)

where:

¢ R; 41 is the return to be realized at time t + 1, E is the expectation operator,
e Biisthe N x 1 vector of exposure of asset i to the observed N factors X,
o X;isthe (1 x N) vector of factors that are assumed to affect expectations,

o [; is the time-specific function that translates observed factors to retun expectations

Here, one can think of X; as the set of themes and criteria that influences asset return expectations and
portfolio preferences at a point in time. For example, they may be a popular theme such as Al to drive
growth expectations for the share price of Nvidia lately. The exposure §; ; of Nvidia to the Al theme may be
high while for a company such as Alcoa which is in the business of metal mining globally, ; ; may be zero.
One can think of g; ; as traffic lights switching on and off over time differently for each stock as themes,
risks and investors’ preferences evolve.

The issue is that we do not know any of those parameters in that simple abstraction (1). We have some idea
about what the investors generally consider, maybe factors such as profitability, volatility etc., but we have
no idea how those considerations might translate into return performance at a point in time. We would like
to believe that we have some intuitive list of what X; could consist of, but we do not have a clean method of
measurement either. Therefore, equation (1) does not tell us anything other than 'whatever works!" offers
no insights. (That pretty much sums up the field of asset pricing in finance.)

All we have is the historical realizations of R; ; and a data set of factors X; that we imagine, and hope, will
show some covariance with future returns to help us distinguish the Winners and Losers. So, as one can
easily see, the problem in hand is not much different from the Lucky Bets scenario discussed earlier.

Our case is probably a very good example of potential use cases of Al to solve complex problems without
a specific formula. We observe some phenomena that is driven by complex interactions of unknown set
of factors. We hope that the computational technology will be able to sift through huge data sets to
generate useful predictions although we are not able to identify what exactly drives those predictions. Image
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recognition with deep neural networks is such a process. We cannot tell how exactly the image recognition
works, but we see that computer algorithms trained on big-enough data sets can accumulate the cognitive
experience to generate impressively accurate predictions. A deep learning model trained on millions of X-ray
images, for example, comes close to obtaining a life-time experience of a doctor. That is made possible by
being exposed to a very large number of instances of a well-defined problem.

To have access to 'the instances of a well-defined problem’ is the key issue that distinguishes forecasting from
other problems. As we increase the size of our data set, by extending the history for example, we do not
necessarily accumulate the instances to learn from. The phenomena that we register in our data sets are
mostly the outcome of instances of unique or temporarily relevant circumstances. That is why, with historical
finance data, we do not see the 'double descent’ phenomenon that is remarkably demonstrated by Belkin
(2021) [22]

Alonso and Sonam (2023) [23] applies Belkin's (2021) [22] methods to financial return data set and shows
that the learning accuracy rate does not improve with larger data sets with more parameters. Alonso and
Sonam (2023) [23] formally experiments with the financial data sets and documents how the historical data
sets fail to show any potential for 'double descent’.

over-parameterized

under- parameterized

Test risk
“classical”
regime

“modern”
interpolating regime

~ Training risk:

. _interpolation threshold

Figure 2. Double-descent of over-parameterized ML models shown in Belkin (2021)

In our case, we have a similar data set with (very) limited learning capacity. In our modeling exercise, we
need to humbly accept that fact, and try to analyze what we can distill from the data set. As discussed in the
earlier section, the main argument and motivation of this paper is the lack of such approaches in common
ML-driven forecasting practices. There is too much focus on the instances of statistical findings, and too few
discussion about how much luck is involved in those findings.

Our data set is the same as the one used in Guida (2020) [24]. The data is available through the book’s
Github. We have monthly data on the Total Return of 1212 global stocks over a 20-year period from 1998
to 2019. All the stock characteristics (features) to be used as predictors are scaled and normalised and
they are ready to be used in ML algorithms. Not all stocks are alive throughout the 20 years. Some vanish,
others emerge, as they always do, in the data. Therefore, we have an unbalanced panel of cross-sectional,
time-series data with over 208K rows (roughly [20 year x 12 months x 1000 stocks]).

Along with the stock returns, there are also 93 different company characteristics such as valuation ratios,
past returns, past volatility, accounting measures of profitability, growth, debt, capital expenditures, and
many other similar variable with seemingly relevant economic measures. Of course, we do not know whether
any of these variables make any reliable predictor of Winner or Loser stocks at any time. Although the
variables seem to have financially meaningful labels, they are not necessarily different from any random
number in relation to their predictive value for future stock returns.

Our prior is that we have some function given in (1) that will partly reveal itself in the large data set in hand.
The data is aligned such that a model can be fitted as:

Ritst = T{(B},+ Zt) +€irat (2)
where:

e R; 41 is the return to be realized at time t + 1,
* B, is the estimate of exposures of asset j to the observed N factors Z,

o Z, is the (1 x N) vector of factors that we have in hand with no causal relation with the returns,
necessarily
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e [/ is the time-specific estimated function that translates observed factors to future returns observed

We transform the problem to the following form:

rank[R; 1] = rank[T{ (B} ; - Ze)] + @i 41 (3)

because we are interested in the Rank of the future returns across stocks at a point in time. We set R; ;.1 as
the Next 3-Month Return. For example, in 2009-December, we would like to predict the Rank of returns
over the 3 months from 2010-Jan to 2010-Mar. At each point in time (i.e. each Month in the data set), we
define the top 80% as Winners = 1, and the bottom 20% as Losers (Winners = 0).

To fit a tree-based model, we can use the XGBoost (Extreme Gradient Boosting) algorithm. XGBoost builds
an ensemble of trees sequentially, where each tree corrects the errors of the previous ones by focusing on
the hardest-to-predict cases. The algorithm incorporates regularization to prevent over-fitting. It is popular
in categorization (1 vs. 0) problems. The model output includes decision trees similar to the Figure 3 below.

As a start, let’s pick a small portion of the large data set. Let’s take the first 3 years as the Train, and pick the
3 months immediately after the Train, as the Test sample. Our hope is that the model will train on the past 36
months as the 'most relevant’ period to forecast the Winner and Loser stocks in the next 3-month period.

Leaf
Cowver: 971.746003

Value: -0.00378459389

Lesaf
Cover: 513.481609
Value: 0.0164363571

Lesaf
Cower: 266.670047
Vidlue: 00431921296

Leaf
Cowver: 467.126343
Value: 002106601

00001 S Lesf
—— Cover: 172.74469
Vilue: 0.010526593

Leaf
Cover: 21590027
Value: -0.0181742851

Figure 3. A partial picture of an example XGBoost tree

To find the best-performing model, we enable hyper-parameter tuning and let the gradient descent algorithm
iterate over various parameter combinations and pick a model based on the AUC (Area Under the Curve)
measure based on the ROC (Receiver Operating Characteristic) curve. For our given sub-sample, the AUC
numbers as seen in Figure 4.

We see that the Test AUC tapers off quickly while Train fit is improved with iterations. This is not surprising
since the useful information content of the data is limited in a similar fashion to the experiments conducted
by [23].

The selected final model shows an ROC curve in Figure 5. The predictive ability looks poor but in the
financial markets context, marginal improvements in the probability of picking Winners versus Losers may

8/15



AUC of model iterations
e {rain_auc e=——test_auc
078
0.7¢
074

0.72

0.68
0.66
0.64

0.62

1 16 31 46 61 76 91 106 121 136 151 166 181 19

Number of Iterations

Figure 4. AUC of Test and Train over 200 Iterations

ROC Curves

(Sensitivity)
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1 1

0.4
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|
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| | | | |
0.0 0.2 0.4 0.6 08 1.0

probability of false alarm
(1-Specificity)

Figure 5. ROC Curve suggests very limited predictive potential but it is better than expected for
stock returns

have significant economic meaning. The idea is not to reach high accuracy, such as in the X-ray image
recognition problems, but to raise the odds somewhat, even if it is small.

Imagine running a hedge fund managing $10 billion, a 1% increase in the odds may amount to non-negligible
gains. Therefore, in the context of stock returns, the results look interesting, and even remarkable. When
we carry the model to a Validation sample that is later than the Test sample, we see that a similar outcome
occurs.

Table 1 below presents the results of the Logit regressions of Predicted Probability on the Realised Probability
of selecting Winners. Both the Test sample and Validation sample results confirm that the model-estimated
probabilities have a statistically significant correlation with the actual outcomes. That is quite encouraging.

The Test sample used to produce the results is in 2002. If we were in 2003 now, and we had run the same
method to get these results in 2003, would we recommend the ML-driven stock selection strategy as a
useful model? Maybe, if we believed that the results are repeatable in the future. However, we did not
produce any evidence on how repeatable the results could be.

At this point, it is important to remember the discussion about the ’'instances of statistical results’ being
published, and sometimes commercially implemented. In the examples discussed earlier, an in many other
similar work, the researchers report the incidents of interesting results appearing in their data sample, but
do not proceed with further discussions on reliability or future usefulness. They conclude their work with
the reporting of the statistical instances without analysing how easy it might be to find a fluke with the data
and the ML machinery in hand. Those results do not reflect any ’learning’ or 'Al’, just like the results shown
here so far do not.

Now, let’s develop our example further by utilising more of the data sample. How would the results look
if we were to re-run the modeling exercise over other periods, and then look at the performance of the
portfolios that might have been constructed with the help of the ML-driven models?
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Sample: Test. Logit Regression

Dependent Variable: Winner or Loser: 1 or 0

Estimate Std.Error z-value
Intercept -5.4 0.7 -7.7 *Fx*
Predicted Odds of Being Winner 10.6 1.36 -7.8 ¥¥x
**¥ Significant at 0.001 level
Sample: Validation Logit Regression
Dependent Variable: Winner or Loser: 1 or 0

Estimate Std.Error z-value
Intercept -5.8 0.4 14 ***
Predicted Odds of Being Winner 11.3 0.8 14,2 ***

*** Significant at 0.001 level

Table 1: Do the predicted odds actually help predict the Winners?

When we repeat the exercise over different, consecutive samples and show that we are able to estab-
lish a relation between the odds predicted by the ML-driven model and the real odds of catching the
Winners, we might have an 'Al-powered’ strategy for stock investing.

It is common practice to apply a moving-window sampling to partition the time series data into Train and Test
sub-samples so that the chronological consistency is maintained in the process. Randomized sampling over
time does not work with time-series data due to the risk of look-ahead bias. Especially in the investment
strategy development practices, researchers run the model-driven portfolio decisions over time with moving
samples to demonstrate how the portfolios could have performed if the same decision rules or modeling
methods were applied. It is called back-testing. Many academic publications also use the same procedure to
validate their predictive modeling. (See Kelly et al. (2022) and Harvey et al. (2019) [19, 25] for a couple of
examples.)

To see whether our ML-driven portfolio decision rule could work over time, let’s repeat the XGBoost model
fitting exercise over consecutive moving samples and construct portfolios according to the predicted odds
of catching Winner stocks. As mentioned earlier, the objective is not to make highly accurate predictions
of stock returns but to improve the odds for our bets in the gamble. At a point in time, we bet on roughly
150-200 stocks to buy (to go Long in finance lingo) and about the same number of stocks to sell (to go Short
in finance lingo) out of about 1000 stocks. Among all those bets, if we can catch a few good ones, and avoid
the bad outcomes each time, we can accumulate profits as we repeat the same process over and over.

We let our XGBoost model train over 36-month periods, as shown in Figure 9, then predict the Winner
stocks in the consecutive 3-month Test period which is separated from the Train sample by +3-month gap
to avoid any information leakage. We construct equal-weighted portfolios of stocks that are predicted to
be likely to deliver Winner performance (i.e. top 80-percentile in that particular 3-month period) and we
build another portfolio with the stocks that are predicted to be the least likely Winners. We calculate the
return difference between the predicted Winner and Loser stock baskets for the period up to 2008. The
accumulated return trajectory looks like the one shown in Figure 10.

The performance chart looks encouraging again. The Al machinery seems to be able to find a way to improve
the odds of our 3-monthly bets on stocks. The evidence on the usefulness of the ML algorithms to guide
the future stock return forecasts is accumulating, or it seems so.

Such cumulative return charts of back-tested portfolios are used widely as a historical validation tool in
finance. Although it is helpful to run such experiments on historical data sets, the resultant performance
charts may not reveal much about model reliability. In our case, for example, where we choose roughly 200
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‘ Rolling Sample Train-Test — Cross Validation in Time
Month 1 Month 230
—_

36 Months, Month 1:36 Validate
36 Months, Month 2:37
36 Months, Month 3:38

—_—

Figure 6. Model fitting with moving samples in time

Cumulative LONG_SHORT Return of Portfolios Based on
the Predictive Models: 2002-2007
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=\/alidation Sample Portfolio = ===Test Sample Portfolio

Figure 7. ML-driven model seems to deliver remarkable portfolio performance!

stocks among 1000, we have to acknowledge that there are countless (practically, pretty much infinitely
many) portfolio combinations that may be shown to outperform another. It is highly unlikely not to randomly
find a lucky portfolio among co many possible combinations.

On the other hand, if we divide our sample into much smaller sub-samples, 100 stocks among the available
1000 to fit our model, for example, the advantage of exploiting large data sets with ML algorithms fade
away. Therefore, when we see back-testing exercises that are driven from ML models trained and tested on
large data sets, we need to look into the drivers of results carefully to answer the following question: Is the
cumulative performance driven by a coincidental sequence of luck or by the accurate predictions of the model?

In commercial applications, such as the Al-powered ETF products mention earlier, the questions about the
probable sequential luck in their back-tests are completely omitted. Such an inquiry is against the commercial
incentives to ride the Al wave of our time. Additionally, academics also tend to rely heavily on back-test
results to show some evidence of validation for their models. Those practices are criticized in a growing
number of papers such as [13], [14] and [25].

Now, let’s make an attempt to shed some light onto the likelihood of 'sequential luck’ in our case. We see
that the ML-based model is able to help us accumulate positive returns with the historical sample prior to
2008. Are those positive returns driven by the models’ successful predictions or are we picking up some
lucky draws generated by the complex decision tree models?

In order to answer that question, we can run Logit regressions just like the ones presented earlier. If the
"predicted odds of being a Winner stock’ correlates with 'actually being one of the Winner stocks’ consistently
over sequential samples, then we can build more confidence on the reliability of the data and the methods
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employed.

In Figure 8, ideally, we would like to observe the z-values pile up in the second quadrant, in and around the
blue shaded area. We see that the dots are slightly tilted towards that area, but it is hard to argue for a
significant cluster. Actually, if we remove 2-3 outliers from the picture, the chart becomes an evenly spread
out scatter centered around zero. That suggests that some luck is involved in upward-trending back-tests.

When does the model seem to predict the odds of catching Winner
stocks both in the Test and Validation samples?
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Figure 8. Z-value of Logit regressions of model prediction on real outcomes - Test vs. Validation
samples

Random luck should converge to an average of zero success in the long run. You might have some lucky
streak from time to time, but it tends to correct over time. When we extend our sample further into the
following 10 years, we see that outcome.

In Figure 9, the Test sample continues to accumulate some positive return since, during the hyper-parameter
tuning and model-selection process, the iterative algorithm uses the Test sample to optimize accuracy.
However, when we try to implement that ‘optimal model’ in the following validation period, we see that the
model does not bring any value.

If we were in 2009, for example, and got excited with the back-test results of our smart, Al-powered setup
and implemented it as an investment strategy, we would end-up losing great sums of money- just like many
other similar strategies do all the time.

The simple case discussed above clearly demonstrates the importance of collecting as many instances of
statistical results as possible to gauge the reliability of the models fitted to historical samples. Unfortunately,
neither the financial industry nor the academic researchers seem to have the necessary focus on reliability
due to the ongoing rush to produce the next interesting statistical machinery that seems to show an instance
of predictive success. Many end up reporting their lucky draw with an 'outcome bias’.

Forecasting is not only about predictive accuracy but also about estimation of the model risk. Machine
learning models that are over-fitted onto the single sequence of observed history carry substantial reliability
risks. However, the trendy labels with suggestive words such as 'learning’ and 'intelligence’ seem to create
some illusion about the models’ limited capabilities especially with historical data in social contexts. The
luck factor and observation bias hiding behind the complex algorithms is a much bigger problem than it is
usually discussed.

3 Conclusion

'Learning’ is essentially about figuring things out with experience. Al technologies allow the computers to
gain and simulate experience by using large amounts of data. As long as we can define the objective and
formulate the related optimization problem, iterations over patterns in large data sets help us distill the
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Cumulative LONG-SHORT Return of Portfolios Based on
the Predictive Models: 2008-2018
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Figure 9. Performance in the post-2008 sample converge to zero

mechanisms that bring practical solutions. That is what we observe in many fields from automation to GO
playing. The Boston Dynamics robot dog, Spot, for example, learns to walk over obstacles after processing
the data of all previous falls to make improvements on its target.

A historical data set generally does not provide much information on repeated failures. It shows the outcomes
captured in a certain set of circumstances that may radically change over time. To adopt Al techniques with
such data sets might help us uncover some patterns that occurred in the past, but it would not necessarily
yield any reliable predictions for the future.

The researchers in social fields, such as economics and finance, generally assume that an out-of-sample
back-test can be used as an evidence of reliability. They present their results without discussing how likely it
is to find such a back-test result simply by luck. In some cases, like the one developed in this paper, it may
be very easy to find just by construct. The way we design the prediction target, the data we use, and the
computational tools we implement might become a powerful combination to produce many statistical flukes.
Therefore, while designing forecast models, the researchers need to extend their results into a detailed
discussion on reliability.

Given that we are able to discover statistical patterns and validate them with the historical data, how useful
should we expect those findings to be in the future?

To answer that question, we need to run empirical experiments to show what the results could have been
if we had actually implemented similar models discovered in the past. The analysis and discussions in this
paper offer some practical approaches to design such experiments. The results show that the incidental
statistical discoveries may crumble easily, no matter how they may look convincing in the past. The finance
literature is full of such examples.

As Al-powered applications proliferate many fields in business and academia, it is important to acknowledge
the rising risk of statistical deception as a byproduct of careless and lazy model implementations. Extra care
and regulation may be needed in the areas where artificial intelligence blends with too much natural human
ignorance.

4 Discussion

The complexities related to the implementation of predictive machinery in financial investment and economic
policy are actually go far beyond the reliability issues. For example, if large asset managers start implementing
investment decision rules based on similar models, and if those models start to trigger correlated decision
signals, they might generate self-fulfilling fluctuations in the market. Not only the actions become more
predictable but also the models might induce cascades of decisions that are chasing each other.

Cascading actions are a common phenomenon in the financial markets. The Al models carry the risk of
amplifying the cascades with automated herding behavior. Then the models drive their own validation
success, and demise.
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The nature of the problem is quite complex. In social settings, if enough people believe in something, that
belief actually becomes the truth. If all believe that Al has huge economic potential and NVIDIA will be
the company to benefit from that economic potential, and then invest in the company, NVIDIA stock price
surges, pushes down cost of capital and triggers more investment decisions by the company, in a circular
manner. Al-driven decision rules can work to build that self-fulfilling circuit. Therefore, the reliability and
usefulness the models become rather fluid and stochastic.

An analogy from image recognition models would be as follows: In social settings and markets, if there are
enough number of people that believes in a model that says the image is a cat, the image actually becomes a
cat, no matter what it was to start with.

Such complexities will probably be the subject of other papers.
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Appendix A: Data set

The data set on stock returns and attributes is a courtesy of the work by Guida (2020) [24]. The variable
descriptions and exploratory data analysis can be found at: https:/www.mlfactor.com/data-description.html

All feature variables are scaled and normalised. The details are not included to keep this document in
manageable length.

The R codes used in this paper are available by request from the author.
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