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ORIGINAL RESEARCH PAPER

AbstractAmid all the hype around the economic potential of AI technologies, there is a growing risk of data analysisoverkill in many applications. That risk is particularly high for the forecasting and decision-making modelsbeing proposed in social contexts such as economic policy, financial investment, and corporate decisions.Common research practices in those areas keep focusing on incidents of statistical discoveries. They omitthe substantial reliability issues stemming from the nature of the data that offers very limited ’learningpotential’ for the machine learning (ML) algorithms. In this paper, I focus on the use of ML algorithms appliedto such forecasting problems. I illustrate the reliability issues with a detailed example that builds a stockinvestment strategy by using the XGBoost algorithm on a large data set. The example demonstrates howeasy it is to discover seemingly interesting random patterns when we fit over-parameterized models onhistorical data. The results also offer practical methods to investigate the statistical flukes and the reliabilityissues that are concealed by complex algorithms of artificial intelligence being blended with natural humanignorance, as seen in popular practice.
Keywords: forecasting, reliability, machine learning, asset pricing, factor investing
1 Introduction

"It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of
foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of light, it
was the season of darkness, it was the spring of hope, it was the winter of despair". Tale of TwoCities by Charles Dickens

This famous opening line of the Charles Dickens classic, Tale of Two Cities, works perfectly to encapsulatethe main theme of this article in a nutshell. The simple and timeless language of the novel fits quite well toour data-obsessed times.

"It is the best of times, it is the worst of times, it is the age of artificial intelligence, it is the age of
human ignorance, it is the epoch of data analytics, it is the epoch of statistical deception."

In the current digital age, there is a euphoric race both among businesses and academics to showcase thelatest machine learning (ML) applications in their own practice areas. We see an exponential growth inML-driven research output and commercial applications that utilise increasingly complex predictive modelswith ever-larger data sets. Amid all the buzz around the economic potential of artificial intelligence (AI)technologies, however, there is also a growing risk of data analysis overkill in many cases. The rush to catchup with the self-fulfilling ’AI revolution’ wave is inevitably generating misused, misguided implementationsalongside many fascinating products. That risk is particularly high for the forecasting and decision-makingmodels being proposed in social contexts such as economic policy, financial investment, corporate strategyand such.
In this paper, I focus on the use of ML algorithms applied to forecasting problems. I discuss the uniquenature and the limitations of historical data sets that have stochastic state-and-time dependent variables. Iillustrate the specific issues with detailed examples from the financial investment strategy applications.
The main sources of concern about the excessive use of ML techniques to build decision models are asfollows:
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1. A unique sequence of historical events caused by incidental patterns of stochastic factors, andcomplex confounding effects, do not provide useful data sets that are sufficient to make reliableinferences about the future. In other words, unlike many successful applications such as imagerecognition, complex pattern discoveries within historical data sets, may not amount to ’learning’or ’intelligence’ of any sort.
2. Although the Train-Test-Validation cycle of the ML algorithms may generate incidents ofattractive back-test results (i.e. performance validations) on historical data, the relation betweenthe performance metrics and future reliability may be highly uncertain.
3. In cases where (1) and (2) are true, there are significant reliability and outcome bias issues inML-driven models. A forecasting solution that looks encouraging with historical data, may easilybe an over-fitted fluke driven by a lucky draw from a large random set.

Surprisingly, neither academics nor professionals in social sciences tend to sufficiently address these seriousissues. The hype to assign a flashy "AI" label on new products seems to trump the obvious reliabilitychallenges. Probably fascinated by the speed and efficiency of ML algorithms, the data analysts seem toignore the significant likelihood of making incidental, lucky discoveries with big data. Also, they tend toforget that a longer history, occurred and evolved with unique circumstances in time, does not necessarilymean a bigger data set with relevant and useful information.
The following sections will discuss the reliability risks in further detail along with some examples from thefinance literature. At this point, however, it is probably a good idea to offer a bit more clarification about theconcepts mentioned above for the non-expert reader.
1.1 Data mined flukes versus reliable insights
To understand the outcome bias and statistical flukes found in historical data analysis, let’s consider anextreme case where the target variable (i.e predicted or forecast variable) is completely random. Assumethat you are the manager of a company named Lucky Bets Co. You believe in luck and in lucky people. Youare in the gambling business, but you do not place bets on games. Instead, you place bets on lucky people.You provide funding for the gamblers that you think are lucky to win at the roulette table in return for alarge share of the prizes they win.
The skillful data analysts of Lucky Bets Co. collect a large historical data set on many attributes of theaddicted roulette players. The data set includes the players’ winning percentage over the past 5 years,amount of money they lost, age, height, profession, post code, shoe size, hair color, first letter of their names,star sign, and many others. The analysts divide the data set into Train, Test and Validation samples, and thenlet the ML algorithms run over-parameterized deep learning models, as they always do. After millions ofiterations, the analysts provide a combination of attributes that predict a higher probability of winning at theroulette table. The results are confirmed in the Validation (hold-out) sample as well. All standard statisticalmeasures check within the Test and Validation sub-samples.
What would you do? Would your expectation of winning probability change for the people with the rightattributes? Assuming everyone plays the same game with the same odds, would you bet on the people with"statistically proven" success? Are there lucky characteristics, or lucky data analysts here?
Your betting decision actually does not matter. It will not change the odds of winning one way or another.The data analysts did not do much more than wasting electricity. They were lucky. Also, it was almostinevitable that they would find a fluke that works after so many iterations over countless combinations ofgambler attributes. The historical results, no matter how statistically significant they may look, provide noguidance for the future outcomes that are completely random. The analysts just documented an observationbias - a lucky historical outcome with no implication for the future. That is because each roulette run is anindependent random event by construct.
On the other hand, it may actually be a good strategy to go along with the model and promote it as the new,cutting-edge AI-Powered innovation by Lucky Bets Co. If, somehow, it catches another lucky episode, itmay bring extra fame and fortune. (Actually, there are online betting companies, especially in sports betting,that offer AI models for their customers. See examples such as DeepBetting, BetIdeas or Infinity Sports AIamong others.)
Typically, when there is a proposed forecast model, or a decision method, we are likely to see some instancesof out-of-sample performance metrics as the key results. An instance of out-of-sample test is consideredsufficient to prove the suggested model’s worth. The reliability risk and potential ’observation bias’ originating
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from the iterative data mining embedded in over-parameterized ML models are mostly downplayed. As aresult, the real important question is mostly left unanswered.
Given that we are able to find some model that performed well in the past, how confident are we that the model
will provide significant performance in the future as well? What is the correlation of the actual implemented results
with the (out-of-sample) past performance that we could dig out by sifting through the data?

In the case of Lucky Bets Co., we know the answer. The correlation is zero. If we keep repeating theexercise of finding new hidden patterns with strong past performance, by utilising more and more data, andthen we implement each model as a separate AI-powered betting strategy, we surely will find out that thedocumented past results have no relevance for future outcomes. Such an analysis would serve as the properback-testing experiment to provide some guidance about the reliability of the methods.
Those experiments almost never show up in the results of ML-driven forecasting research, especially inthe social science fields such as economics and finance. Both academic researchers and professionals keepshowing instances of statistical discoveries, instead. Their common audience usually cannot distinguish thelucky coincidences hidden behind the complex and automated algorithms.
The computational power of the ML algorithms help the empirical researchers with the fast discoveryof interesting patterns, but the findings might be just an ’observation bias’ - a fluke of the unique setof circumstances that might not repeat ever again. Therefore, when we try to import the predictive AItechnologies to forecasting practices, one of the first questions to ask has to be: "How similar is my case to
Luck Bets Co.?"
Many examples of empirical research output that are being promoted with sparkling AI labels might not befar from just another Lucky Bets exercise. It is common to find similar examples, especially in fields that relyon non-repeatable, state-and-time dependent data. Just to mention a few, Berman et al. (2021) [1], presentsa model that integrates big data analytics with strategic planning to optimize business decisions; Lee andChen (2020) [2] presents a machine learning model that predicts both employee success and retention;Chen and Guestrin (2016) [3] predicts political instability with ML models fitted onto social media data, andmany others. In each study, we see some contemporaneous covariance among variables being documentedwith no in-depth discussion about cross-validation and reliability issues originating from particular methodsand data samples used.
Another example, Erel et al. (2021) [4], presents results of decision tree models to select directors forcorporate executive boards. The target variable used is "director success" which is some complex proxymeasure constructed with authors’ subjective discretion. It includes ad hoc indicators of shareholderpopularity and company profitability. The ML algorithms run an over-parameterized decision tree model ona predetermined training sample and a fixed test sample. The model iterates over tens of different personalattributes, from gender and age, to the name of the university that the director graduated from. There isno cross-validation across different periods, industries, etc. There is no proper validation experiment overtime either. The incident of the statistical results are particular to a very narrowly defined data constructionprocess.
To find some interesting-looking pattern in large data sets does not require much skill since we have thetechnology to automatically iterate over pretty much countless parameter combinations. Those empiricalresearch articles, and many other similar work, are arguably not that far away from the Lucky Bets case.Although the publications succeed in uncovering intriguing incidents of empirical results, future reliability ofthe findings, as a useful forecasting model, is a wide open question.
Historical data sets used for forecasting models in social contexts usually do not offer the breadth for propercross-validation tests. After all, we have only one trail of the actual history. Therefore, AI methods that areemployed successfully in other areas, may be unsuitable, or misleading, due to the irreducible over-fittingrisk originating from the nature of the data sets. Quick and lazy ML applications with historical data requirescrutiny within their own context since the standard data validation methods are mainly not feasible.
1.2 A special case: Financial asset pricing and investment strategy applications
Finance has been at the forefront of digital automation and the commercial use of AI technologies. Financialindustry operates on an extremely digitized platform that produces immense amount of data, and the datauniverse is mostly accessible for analysis. Data collection is relatively easy and straightforward. Financialindustry employees, especially on the trading and investment side, tend to be highly skilled in data analysisand coding practices. At the same time, the potential reward of successful forecasting models can be veryhigh and fast especially in the trading and investment world.
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In addition to the general economic backdrop that motivates the use of ML models in finance, the academicliterature also provides some extra justification for the use of sophisticated predictive models in this field.For example, the investment management industry makes use of models inspired by the academic assetpricing literature. Contemporary empirical research in this field has developed around the Arbitrage PricingTheory (APT), introduced by Ross (1976) [5], and the Stochastic Discount Factor concept, introduced byMerton (1973) [6], that lay out the framework for the empirical inquiries into the driving factors of financialasset returns. The seminal work by Fama and French (1992, 1993) [7],[8] and a large body of empirical workthat followed the same path into the inquiry of asset returns, built a cultural tradition that is baked intothe contemporary curriculum of finance education. The highly-regarded Chartered Financial Analyst (CFA)program also teaches the APT and related concepts that underpin the empirical inquiries into historical datato search for the drivers (factors) of asset returns.
The basic idea is that the financial asset returns are determined by their sensitivity to (potentially many) riskfactors that the agents trade in the market place. It sounds like an axiomatic statement that opens up a widegate for the inquiry of those elusive factors.
The complex and efficient predictive machinery offered by the recent developments in AI technology arewelcomed as a powerful tool to work on the eternal questions of the investment industry and the assetpricing academics: What drives the differences in asset returns? What should be the decision criteria to choose
the assets to invest for the short or the long term?

To answer those questions, quantitative finance professionals and academics dedicate a great portion oftheir work to building predictive models for the asset return dynamics. Common empirical research practicestarts with an investigation of the so-called factors that show some covariance with the cross-sectionalvariance of asset returns in hand. Once the candidates for useful factors and trading signals are found,they are put into a back-testing process to validate their historical success. The instances of out-of-sampleback-test results achieved over a selected period is usually considered as a sufficient experiment result.Reliability is mostly left out of the discussion.
With the advances in data access and computer power, the statistical discoveries became rather easy and fast.Sequentially, the number of academic publications showcasing the discovery of new factors started to growrapidly during the early years of this century. From economic and financial indicators, to eccentric sentimentand risk measures, numerous variables are thrown into predictive models with the hope of finding somecovariance patterns. The finance professionals started to implement such models for portfolio constructionand proprietary trading practices at an accelerating pace, as well. By the time we reached 2010s, theasset pricing literature became a ’factor zoo’ as famously coined by Cochrane (2011) [9]. The criticism andwarnings about the scientific quality of the empirical findings began to accumulate.
The critics highlighted two key observations. One, the published articles were presenting obviously over-fitted models that did not pass the statistical hurdle tests and the test of time. Two, the investment strategiesbased on the suggested factors mostly failed to deliver returns documented in their back-tests. In otherwords, the real out-of-sample tests proved that neither the predictive models nor the underlying theory wasable to deliver a decent reliability over time.
The published statistical results were not necessarily wrong or careless, however. The issue was that thesuggested models were not far from our Lucky Bets Co. example, again. People put too much faith in theinstances of pattern discoveries driven from over-simplified models. Even the factors suggested by NobelPrize winning Eugene Fama and Ken French’s work failed to repeat the documented patterns consistently,once they were implemented as real investment strategy products. See Carhart (1997), Fama, French andCarhart (2000), Fama and French (2015) [10, 11, 12] for more detail on that point.
As a result of humbling real-world validation experiences in the financial markets, the discussions on thepotential uses of ML-driven or other type of predictive models started to shift from euphoria to skepticism,especially over the past 10 years. At this point, we can probably say that finance is more advanced in thediscussions about reliability compared to other social science fields.
The discussions are evolving in three main paths. The first path can be called the ’scientific quality’ argument.Studies such as Bailey and Prado (2013, 2014), Prado (2020), Harvey et al. (2016), [13, 14, 15], [16, 17]present strong arguments about the ’data mining’ and ’over-fitting’ issues. They discuss the rampant use ofstatistical overkill and careless back-test practices spoiled by the ease of access to computational tools andlarge data sets. The criticism raised by Prado and Harvey is mainly about the errors, tricks and and biases instatistical inference. They are valid and crucial points that highlight the risk of false discoveries and wronginferences made in common research practices.
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However, the failures of the forecasting models in this field are not necessarily driven by the lack of diligencein statistical analysis. It is driven by the fact that there is an irreducible reliability issue caused by the naturalinstability of the system dynamics. To argue for scientific quality of the predictive models applied to naturallyunpredictable dynamics is somewhat redundant. After all, it is impossible to determine the causes of modelfailure with confidence when the model is too simple relative to the stochastic complexity of the system inhand. As the past research experience showed time and time again, no matter how robust your statisticalresults may be, the estimated model may fail to perform, or become irrelevant, simply because of the evolvingcomplexity of the system not being captured by the available historical data.
Second path can probably be categorized as the ’benign over-fitting’ effort. Studies such as Kelly et al.(2022) [18, 19] do not find the risk of over-fitting as an impediment to ML-based iterative search for hiddenpatterns. Instead, they try to develop the machinery that let over-parameterized, over-fitted models toautomatically iterate towards a rather distilled form. They also let the ML algorithms to adjust over time, andover different states, and also let the algorithms discover those adjustment rules independently from thedata. This line of research focuses on methods to distill signals without being limited by theory, or any otherpriors. It is probably a step in the right direction with a powerful inspiration, but reliability is still mostlymissing in the discussion. Instances of good-looking back-tests are presented without a demonstration ofhow reliably the complex models might perform relative to simpler decision rules over time.
The third path suggests an alternative use case for the ML algorithms. The work by Chean and Zimmerman(2020) , and Chen and Valikov (2021) [20, 21] embraces ML-powered intentional data-mining to investigatethe reliability of the models proposed by the ’factor zoo’ literature mentioned above. The approach isa leap from simply documenting another discovery of factors towards an analysis of real out-of-sampleperformance. With a multitude of different data-mined correlations that can easily present some historicalperformance, this line of work aims to establish a benchmark for the value and usefulness of the modelsthat claim to have some prediction power.
I think Chen’s work is an example of how the AI technologies can bring a significant disruption to socialsciences and forecasting practices. By allowing the fast and automated search algorithms, ML models canhelp us to devise tools to help distinguish a humble analysis that provides insights to highly complex andfluid stochastic systems from a statistical fluke published with a dose of confirmation bias and academichubris.
Meanwhile, although similar discussions happen in parts of the investment industry, the commercial pressureto roll out generic commercial products with a flashy AI-name continues. Take the "AI-labeled" exchangetraded fund (ETF), QRFT - QRAFT AI Enhanced US Large Cap ETF, for example. This ETF relies on "AI-powered models" which are based on some back-tested historical correlations - not some "intelligence"gained by learning from very large big data sets as we see in other fields. As seen in the Figure 1, there is noconvincing performance of any sort. The performance over the benchmark index converges to zero as youwould expect from any Lucky Bets exercise. In academia, as well, we can observe an intellectual inertia tokeep producing those incidental back-test results. The publication rate of such research will inevitably fadeaway as their value-added is tested over time.

Figure 1. AI-Powered Large Cap US ETF Performance; Source: www.qraftaietf.com
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Motivated by the contributions of all three paths followed by recent finance literature discussed above, thefollowing section presents an example of an investigation into an ML-driven method applied to asset returns.
First, by using historical data on stocks and company characteristics, I run a decision-tree model (XGBoost)to intentionally data-mine the factors that distinguish the Winner (high future return) and Loser (low futurereturn) stocks - similar to our Lucky Bets case. I demonstrate how easy it is to document some seeminglysuccessful back-test when you are not much concerned about cross-validation. Then, I run a series ofinvestigations to discuss how similar the case could be to the Lucky Bets scenario.
I do not use the ML techniques to show how we can predict Winners and Losers in the stock market. Instead,I utilise the power of ML to show how reliable the employed data and methods might be for the specificcase in hand.
2 Material and Methods
Let’s assume we have a problem of building an ML-based stock selection method that can possibly beturned into an ETF product similar to the one mentioned above. However, the financial literature doesnot offer much help about the predictors of stock returns. Although there are some obvious commonsense approaches to portfolio construction and investment, there is no formula to predict which stocks willoutperform the others over a certain period, say, the next 3 months or 2 years. Actually, there cannot be aformula because, if there was one, it would be instantly exploited and vanish, anyway.
The markets facilitate exchange of expected risks and returns that fluctuate according to perceived opportu-nities and costs that vary across numerous agents over time and economic conditions. Incidental clustersof those expectations cause demand-supply imbalances to move the asset prices. Additionally, when theunderlying assets deliver unexpected positive or negative economic performance, share prices adjust so asto remain consistent with changing conditions.
Although financial theory does not offer a magic formula, at least it provides the framework that allowsempirical investigations for the elusive, incidental or persistent risk factors that drive returns.
The equation for the expected asset return Ri ,t for the asset i at time t is given by:

E [R i ,t+1] = Γt (βi ,t · Xt ) ) (1)
where:

• Ri ,t+1 is the return to be realized at time t + 1 , E is the expectation operator,
• βi ,t is the N × 1 vector of exposure of asset i to the observed N factors Xt ,
• Xt is the (1 × N ) vector of factors that are assumed to affect expectations,
• Γt is the time-specific function that translates observed factors to retun expectations

Here, one can think of Xt as the set of themes and criteria that influences asset return expectations andportfolio preferences at a point in time. For example, they may be a popular theme such as AI to drivegrowth expectations for the share price of Nvidia lately. The exposure βi ,t of Nvidia to the AI theme may behigh while for a company such as Alcoa which is in the business of metal mining globally, βi ,t may be zero.One can think of βi ,t as traffic lights switching on and off over time differently for each stock as themes,risks and investors’ preferences evolve.
The issue is that we do not know any of those parameters in that simple abstraction (1). We have some ideaabout what the investors generally consider, maybe factors such as profitability, volatility etc., but we haveno idea how those considerations might translate into return performance at a point in time. We would liketo believe that we have some intuitive list of what Xt could consist of, but we do not have a clean method ofmeasurement either. Therefore, equation (1) does not tell us anything other than ’whatever works!’ offersno insights. (That pretty much sums up the field of asset pricing in finance.)
All we have is the historical realizations of Ri ,t and a data set of factors Xt that we imagine, and hope, willshow some covariance with future returns to help us distinguish the Winners and Losers. So, as one caneasily see, the problem in hand is not much different from the Lucky Bets scenario discussed earlier.
Our case is probably a very good example of potential use cases of AI to solve complex problems withouta specific formula. We observe some phenomena that is driven by complex interactions of unknown setof factors. We hope that the computational technology will be able to sift through huge data sets togenerate useful predictions although we are not able to identify what exactly drives those predictions. Image
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recognition with deep neural networks is such a process. We cannot tell how exactly the image recognitionworks, but we see that computer algorithms trained on big-enough data sets can accumulate the cognitiveexperience to generate impressively accurate predictions. A deep learning model trained on millions of X-rayimages, for example, comes close to obtaining a life-time experience of a doctor. That is made possible bybeing exposed to a very large number of instances of a well-defined problem.
To have access to ’the instances of a well-defined problem’ is the key issue that distinguishes forecasting fromother problems. As we increase the size of our data set, by extending the history for example, we do notnecessarily accumulate the instances to learn from. The phenomena that we register in our data sets aremostly the outcome of instances of unique or temporarily relevant circumstances. That is why, with historicalfinance data, we do not see the ’double descent’ phenomenon that is remarkably demonstrated by Belkin(2021) [22]
Alonso and Sonam (2023) [23] applies Belkin’s (2021) [22] methods to financial return data set and showsthat the learning accuracy rate does not improve with larger data sets with more parameters. Alonso andSonam (2023) [23] formally experiments with the financial data sets and documents how the historical datasets fail to show any potential for ’double descent’.

Figure 2. Double-descent of over-parameterized ML models shown in Belkin (2021)

In our case, we have a similar data set with (very) limited learning capacity. In our modeling exercise, weneed to humbly accept that fact, and try to analyze what we can distill from the data set. As discussed in theearlier section, the main argument and motivation of this paper is the lack of such approaches in commonML-driven forecasting practices. There is too much focus on the instances of statistical findings, and too fewdiscussion about how much luck is involved in those findings.
Our data set is the same as the one used in Guida (2020) [24]. The data is available through the book’sGithub. We have monthly data on the Total Return of 1212 global stocks over a 20-year period from 1998to 2019. All the stock characteristics (features) to be used as predictors are scaled and normalised andthey are ready to be used in ML algorithms. Not all stocks are alive throughout the 20 years. Some vanish,others emerge, as they always do, in the data. Therefore, we have an unbalanced panel of cross-sectional,time-series data with over 208K rows (roughly [20 year x 12 months x 1000 stocks]).
Along with the stock returns, there are also 93 different company characteristics such as valuation ratios,past returns, past volatility, accounting measures of profitability, growth, debt, capital expenditures, andmany other similar variable with seemingly relevant economic measures. Of course, we do not knowwhetherany of these variables make any reliable predictor of Winner or Loser stocks at any time. Although thevariables seem to have financially meaningful labels, they are not necessarily different from any randomnumber in relation to their predictive value for future stock returns.
Our prior is that we have some function given in (1) that will partly reveal itself in the large data set in hand.The data is aligned such that a model can be fitted as:

R i ,t+1 = Γ′t (β ′
i ,t · Zt ) + ϵi ,t+1 (2)

where:
• Ri ,t+1 is the return to be realized at time t + 1 ,
• β ′

i ,t
is the estimate of exposures of asset i to the observed N factors Zt ,

• Zt is the (1 × N ) vector of factors that we have in hand with no causal relation with the returns,necessarily
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• Γ′t is the time-specific estimated function that translates observed factors to future returns observed
We transform the problem to the following form:

r ank [R i ,t+1] = r ank [Γ′t (β ′
i ,t · Zt )] + φi ,t+1 (3)

because we are interested in the Rank of the future returns across stocks at a point in time. We set Ri ,t+1 asthe Next 3-Month Return. For example, in 2009-December, we would like to predict the Rank of returnsover the 3 months from 2010-Jan to 2010-Mar. At each point in time (i.e. each Month in the data set), wedefine the top 80% as Winners = 1, and the bottom 20% as Losers (Winners = 0).
To fit a tree-based model, we can use the XGBoost (Extreme Gradient Boosting) algorithm. XGBoost buildsan ensemble of trees sequentially, where each tree corrects the errors of the previous ones by focusing onthe hardest-to-predict cases. The algorithm incorporates regularization to prevent over-fitting. It is popularin categorization (1 vs. 0) problems. The model output includes decision trees similar to the Figure 3 below.
As a start, let’s pick a small portion of the large data set. Let’s take the first 3 years as the Train, and pick the3 months immediately after the Train, as the Test sample. Our hope is that the model will train on the past 36months as the ’most relevant’ period to forecast the Winner and Loser stocks in the next 3-month period.

Figure 3. A partial picture of an example XGBoost tree

To find the best-performing model, we enable hyper-parameter tuning and let the gradient descent algorithmiterate over various parameter combinations and pick a model based on the AUC (Area Under the Curve)measure based on the ROC (Receiver Operating Characteristic) curve. For our given sub-sample, the AUCnumbers as seen in Figure 4.
We see that the Test AUC tapers off quickly while Train fit is improved with iterations. This is not surprisingsince the useful information content of the data is limited in a similar fashion to the experiments conductedby [23].
The selected final model shows an ROC curve in Figure 5. The predictive ability looks poor but in thefinancial markets context, marginal improvements in the probability of picking Winners versus Losers may
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Figure 4. AUC of Test and Train over 200 Iterations

Figure 5. ROC Curve suggests very limited predictive potential but it is better than expected for
stock returns

have significant economic meaning. The idea is not to reach high accuracy, such as in the X-ray imagerecognition problems, but to raise the odds somewhat, even if it is small.
Imagine running a hedge fund managing $10 billion, a 1% increase in the odds may amount to non-negligiblegains. Therefore, in the context of stock returns, the results look interesting, and even remarkable. Whenwe carry the model to a Validation sample that is later than the Test sample, we see that a similar outcomeoccurs.
Table 1 below presents the results of the Logit regressions of Predicted Probability on the Realised Probabilityof selecting Winners. Both the Test sample and Validation sample results confirm that the model-estimatedprobabilities have a statistically significant correlation with the actual outcomes. That is quite encouraging.
The Test sample used to produce the results is in 2002. If we were in 2003 now, and we had run the samemethod to get these results in 2003, would we recommend the ML-driven stock selection strategy as auseful model? Maybe, if we believed that the results are repeatable in the future. However, we did notproduce any evidence on how repeatable the results could be.
At this point, it is important to remember the discussion about the ’instances of statistical results’ beingpublished, and sometimes commercially implemented. In the examples discussed earlier, an in many othersimilar work, the researchers report the incidents of interesting results appearing in their data sample, butdo not proceed with further discussions on reliability or future usefulness. They conclude their work withthe reporting of the statistical instances without analysing how easy it might be to find a fluke with the dataand the ML machinery in hand. Those results do not reflect any ’learning’ or ’AI’, just like the results shownhere so far do not.
Now, let’s develop our example further by utilising more of the data sample. How would the results lookif we were to re-run the modeling exercise over other periods, and then look at the performance of theportfolios that might have been constructed with the help of the ML-driven models?
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Table 1: Do the predicted odds actually help predict the Winners?

When we repeat the exercise over different, consecutive samples and show that we are able to estab-lish a relation between the odds predicted by the ML-driven model and the real odds of catching theWinners, we might have an ’AI-powered’ strategy for stock investing.
It is common practice to apply a moving-window sampling to partition the time series data into Train and Testsub-samples so that the chronological consistency is maintained in the process. Randomized sampling overtime does not work with time-series data due to the risk of look-ahead bias. Especially in the investmentstrategy development practices, researchers run the model-driven portfolio decisions over time with movingsamples to demonstrate how the portfolios could have performed if the same decision rules or modelingmethods were applied. It is called back-testing. Many academic publications also use the same procedure tovalidate their predictive modeling. (See Kelly et al. (2022) and Harvey et al. (2019) [19, 25] for a couple ofexamples.)
To see whether our ML-driven portfolio decision rule could work over time, let’s repeat the XGBoost modelfitting exercise over consecutive moving samples and construct portfolios according to the predicted oddsof catching Winner stocks. As mentioned earlier, the objective is not to make highly accurate predictionsof stock returns but to improve the odds for our bets in the gamble. At a point in time, we bet on roughly150-200 stocks to buy (to go Long in finance lingo) and about the same number of stocks to sell (to go Shortin finance lingo) out of about 1000 stocks. Among all those bets, if we can catch a few good ones, and avoidthe bad outcomes each time, we can accumulate profits as we repeat the same process over and over.
We let our XGBoost model train over 36-month periods, as shown in Figure 9, then predict the Winnerstocks in the consecutive 3-month Test period which is separated from the Train sample by +3-month gapto avoid any information leakage. We construct equal-weighted portfolios of stocks that are predicted tobe likely to deliver Winner performance (i.e. top 80-percentile in that particular 3-month period) and webuild another portfolio with the stocks that are predicted to be the least likely Winners. We calculate thereturn difference between the predicted Winner and Loser stock baskets for the period up to 2008. Theaccumulated return trajectory looks like the one shown in Figure 10.
The performance chart looks encouraging again. The AI machinery seems to be able to find a way to improvethe odds of our 3-monthly bets on stocks. The evidence on the usefulness of the ML algorithms to guidethe future stock return forecasts is accumulating, or it seems so.
Such cumulative return charts of back-tested portfolios are used widely as a historical validation tool infinance. Although it is helpful to run such experiments on historical data sets, the resultant performancecharts may not reveal much about model reliability. In our case, for example, where we choose roughly 200
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Figure 6. Model fitting with moving samples in time

Figure 7. ML-driven model seems to deliver remarkable portfolio performance!

stocks among 1000, we have to acknowledge that there are countless (practically, pretty much infinitelymany) portfolio combinations that may be shown to outperform another. It is highly unlikely not to randomlyfind a lucky portfolio among co many possible combinations.
On the other hand, if we divide our sample into much smaller sub-samples, 100 stocks among the available1000 to fit our model, for example, the advantage of exploiting large data sets with ML algorithms fadeaway. Therefore, when we see back-testing exercises that are driven from ML models trained and tested onlarge data sets, we need to look into the drivers of results carefully to answer the following question: Is the
cumulative performance driven by a coincidental sequence of luck or by the accurate predictions of the model?

In commercial applications, such as the AI-powered ETF products mention earlier, the questions about theprobable sequential luck in their back-tests are completely omitted. Such an inquiry is against the commercialincentives to ride the AI wave of our time. Additionally, academics also tend to rely heavily on back-testresults to show some evidence of validation for their models. Those practices are criticized in a growingnumber of papers such as [13], [14] and [25].
Now, let’s make an attempt to shed some light onto the likelihood of ’sequential luck’ in our case. We seethat the ML-based model is able to help us accumulate positive returns with the historical sample prior to2008. Are those positive returns driven by the models’ successful predictions or are we picking up somelucky draws generated by the complex decision tree models?
In order to answer that question, we can run Logit regressions just like the ones presented earlier. If the’predicted odds of being aWinner stock’ correlates with ’actually being one of theWinner stocks’ consistentlyover sequential samples, then we can build more confidence on the reliability of the data and the methods
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employed.
In Figure 8, ideally, we would like to observe the z-values pile up in the second quadrant, in and around theblue shaded area. We see that the dots are slightly tilted towards that area, but it is hard to argue for asignificant cluster. Actually, if we remove 2-3 outliers from the picture, the chart becomes an evenly spreadout scatter centered around zero. That suggests that some luck is involved in upward-trending back-tests.

Figure 8. Z-value of Logit regressions of model prediction on real outcomes - Test vs. Validation
samples

Random luck should converge to an average of zero success in the long run. You might have some luckystreak from time to time, but it tends to correct over time. When we extend our sample further into thefollowing 10 years, we see that outcome.
In Figure 9, the Test sample continues to accumulate some positive return since, during the hyper-parametertuning and model-selection process, the iterative algorithm uses the Test sample to optimize accuracy.However, when we try to implement that ’optimal model’ in the following validation period, we see that themodel does not bring any value.
If we were in 2009, for example, and got excited with the back-test results of our smart, AI-powered setupand implemented it as an investment strategy, we would end-up losing great sums of money- just like manyother similar strategies do all the time.

The simple case discussed above clearly demonstrates the importance of collecting as many instances ofstatistical results as possible to gauge the reliability of the models fitted to historical samples. Unfortunately,neither the financial industry nor the academic researchers seem to have the necessary focus on reliabilitydue to the ongoing rush to produce the next interesting statistical machinery that seems to show an instanceof predictive success. Many end up reporting their lucky draw with an ’outcome bias’.
Forecasting is not only about predictive accuracy but also about estimation of the model risk. Machinelearning models that are over-fitted onto the single sequence of observed history carry substantial reliabilityrisks. However, the trendy labels with suggestive words such as ’learning’ and ’intelligence’ seem to createsome illusion about the models’ limited capabilities especially with historical data in social contexts. Theluck factor and observation bias hiding behind the complex algorithms is a much bigger problem than it isusually discussed.
3 Conclusion
’Learning’ is essentially about figuring things out with experience. AI technologies allow the computers togain and simulate experience by using large amounts of data. As long as we can define the objective andformulate the related optimization problem, iterations over patterns in large data sets help us distill the
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Figure 9. Performance in the post-2008 sample converge to zero

mechanisms that bring practical solutions. That is what we observe in many fields from automation to GOplaying. The Boston Dynamics robot dog, Spot, for example, learns to walk over obstacles after processingthe data of all previous falls to make improvements on its target.
A historical data set generally does not provide much information on repeated failures. It shows the outcomescaptured in a certain set of circumstances that may radically change over time. To adopt AI techniques withsuch data sets might help us uncover some patterns that occurred in the past, but it would not necessarilyyield any reliable predictions for the future.
The researchers in social fields, such as economics and finance, generally assume that an out-of-sampleback-test can be used as an evidence of reliability. They present their results without discussing how likely itis to find such a back-test result simply by luck. In some cases, like the one developed in this paper, it maybe very easy to find just by construct. The way we design the prediction target, the data we use, and thecomputational tools we implement might become a powerful combination to produce many statistical flukes.Therefore, while designing forecast models, the researchers need to extend their results into a detaileddiscussion on reliability.
Given that we are able to discover statistical patterns and validate them with the historical data, how usefulshould we expect those findings to be in the future?
To answer that question, we need to run empirical experiments to show what the results could have beenif we had actually implemented similar models discovered in the past. The analysis and discussions in thispaper offer some practical approaches to design such experiments. The results show that the incidentalstatistical discoveries may crumble easily, no matter how they may look convincing in the past. The financeliterature is full of such examples.
As AI-powered applications proliferate many fields in business and academia, it is important to acknowledgethe rising risk of statistical deception as a byproduct of careless and lazy model implementations. Extra careand regulation may be needed in the areas where artificial intelligence blends with too much natural humanignorance.
4 Discussion
The complexities related to the implementation of predictive machinery in financial investment and economicpolicy are actually go far beyond the reliability issues. For example, if large asset managers start implementinginvestment decision rules based on similar models, and if those models start to trigger correlated decisionsignals, they might generate self-fulfilling fluctuations in the market. Not only the actions become morepredictable but also the models might induce cascades of decisions that are chasing each other.
Cascading actions are a common phenomenon in the financial markets. The AI models carry the risk ofamplifying the cascades with automated herding behavior. Then the models drive their own validationsuccess, and demise.
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The nature of the problem is quite complex. In social settings, if enough people believe in something, thatbelief actually becomes the truth. If all believe that AI has huge economic potential and NVIDIA will bethe company to benefit from that economic potential, and then invest in the company, NVIDIA stock pricesurges, pushes down cost of capital and triggers more investment decisions by the company, in a circularmanner. AI-driven decision rules can work to build that self-fulfilling circuit. Therefore, the reliability andusefulness the models become rather fluid and stochastic.
An analogy from image recognition models would be as follows: In social settings and markets, if there areenough number of people that believes in a model that says the image is a cat, the image actually becomes acat, no matter what it was to start with.
Such complexities will probably be the subject of other papers.
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Appendix A: Data set
The data set on stock returns and attributes is a courtesy of the work by Guida (2020) [24]. The variabledescriptions and exploratory data analysis can be found at: https://www.mlfactor.com/data-description.html
All feature variables are scaled and normalised. The details are not included to keep this document inmanageable length.
The R codes used in this paper are available by request from the author.
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